Watershed-scale dispersal patterns of juvenile Chinook Salmon (Oncorhynchus tshawytscha) revealed through genetic parentage analysis.

IF 3.4 1区 生物学 Q2 ECOLOGY Movement Ecology Pub Date : 2025-02-11 DOI:10.1186/s40462-024-00524-3
Matthew J Kaylor, Lindsy R Ciepiela, Melody Feden, Joseph T Lemanski, Casey Justice, Benjamin A Staton, Jonathan B Armstrong, Stefan Kelly, Shawn R Narum, Ian A Tattam, Seth M White
{"title":"Watershed-scale dispersal patterns of juvenile Chinook Salmon (Oncorhynchus tshawytscha) revealed through genetic parentage analysis.","authors":"Matthew J Kaylor, Lindsy R Ciepiela, Melody Feden, Joseph T Lemanski, Casey Justice, Benjamin A Staton, Jonathan B Armstrong, Stefan Kelly, Shawn R Narum, Ian A Tattam, Seth M White","doi":"10.1186/s40462-024-00524-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>For many aquatic taxa, juvenile dispersal from spawning locations to rearing habitats is a critical process influencing individual fitness and population dynamics. However, our understanding of dispersal patterns in naturally spawning fish populations remains largely unknown due to the logistical challenges of tagging and tracking movement at early life stages.</p><p><strong>Methods: </strong>We quantified dispersal patterns of a spring-run Chinook Salmon (Oncorhynchus tshawytscha) population in NE Oregon, USA using genetic parentage-based tagging to trace juveniles captured from summer rearing habitats back to their maternal parent and associated spawning location (i.e., juvenile origin). We evaluated overall dispersal patterns, longitudinal trends across the watershed, and relationships between dispersal and biophysical factors, including thermal conditions, network-scale abundance estimates, and juvenile size-at-capture.</p><p><strong>Results: </strong>Overall dispersal of the 1326 juveniles (n sampled = 3388) assigned to a maternal parent (n = 64) was downstream-biased, but we estimated that 32% dispersed upstream and 29% moved into adjacent tributaries after initial mainstem dispersal. Dispersal distances were high relative to those found in other studies, with 25% of parr dispersing more than 0.9 km upstream (max = 10.6 km) and 25% dispersing more than 3.7 km downstream (max = 28.6 km). Analysis of dispersal patterns and potential drivers indicated that (1) dispersal distances, directional bias, and variability showed clear longitudinal trends from downstream to upstream origin locations, (2) temperature was a dominant driver of dispersal, with individuals originating from warmer sections of the mainstem typically moving to cooler mainstem sections or tributaries, and (3) dispersal distance was associated with larger size-at-capture for individuals that dispersed downstream, but not upstream.</p><p><strong>Conclusions: </strong>The widespread dispersal patterns exhibited in this population, including moving considerable distances upstream, downstream, and into tributaries, suggests that dispersal in naturally spawning fish populations may be more extensive and variable than currently recognized. We found that heterogeneity in biophysical conditions shaped within-population variability and riverscape dispersal patterns with important implications for subsequent fish habitat use, distribution, and size. This study provides an approach to evaluate patterns and drivers of dispersal in naturally spawning populations and inform conservation and restoration planning through better alignment with juvenile fish ecology.</p>","PeriodicalId":54288,"journal":{"name":"Movement Ecology","volume":"13 1","pages":"6"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11817820/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Movement Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40462-024-00524-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: For many aquatic taxa, juvenile dispersal from spawning locations to rearing habitats is a critical process influencing individual fitness and population dynamics. However, our understanding of dispersal patterns in naturally spawning fish populations remains largely unknown due to the logistical challenges of tagging and tracking movement at early life stages.

Methods: We quantified dispersal patterns of a spring-run Chinook Salmon (Oncorhynchus tshawytscha) population in NE Oregon, USA using genetic parentage-based tagging to trace juveniles captured from summer rearing habitats back to their maternal parent and associated spawning location (i.e., juvenile origin). We evaluated overall dispersal patterns, longitudinal trends across the watershed, and relationships between dispersal and biophysical factors, including thermal conditions, network-scale abundance estimates, and juvenile size-at-capture.

Results: Overall dispersal of the 1326 juveniles (n sampled = 3388) assigned to a maternal parent (n = 64) was downstream-biased, but we estimated that 32% dispersed upstream and 29% moved into adjacent tributaries after initial mainstem dispersal. Dispersal distances were high relative to those found in other studies, with 25% of parr dispersing more than 0.9 km upstream (max = 10.6 km) and 25% dispersing more than 3.7 km downstream (max = 28.6 km). Analysis of dispersal patterns and potential drivers indicated that (1) dispersal distances, directional bias, and variability showed clear longitudinal trends from downstream to upstream origin locations, (2) temperature was a dominant driver of dispersal, with individuals originating from warmer sections of the mainstem typically moving to cooler mainstem sections or tributaries, and (3) dispersal distance was associated with larger size-at-capture for individuals that dispersed downstream, but not upstream.

Conclusions: The widespread dispersal patterns exhibited in this population, including moving considerable distances upstream, downstream, and into tributaries, suggests that dispersal in naturally spawning fish populations may be more extensive and variable than currently recognized. We found that heterogeneity in biophysical conditions shaped within-population variability and riverscape dispersal patterns with important implications for subsequent fish habitat use, distribution, and size. This study provides an approach to evaluate patterns and drivers of dispersal in naturally spawning populations and inform conservation and restoration planning through better alignment with juvenile fish ecology.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Movement Ecology
Movement Ecology Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
6.60
自引率
4.90%
发文量
47
审稿时长
23 weeks
期刊介绍: Movement Ecology is an open-access interdisciplinary journal publishing novel insights from empirical and theoretical approaches into the ecology of movement of the whole organism - either animals, plants or microorganisms - as the central theme. We welcome manuscripts on any taxa and any movement phenomena (e.g. foraging, dispersal and seasonal migration) addressing important research questions on the patterns, mechanisms, causes and consequences of organismal movement. Manuscripts will be rigorously peer-reviewed to ensure novelty and high quality.
期刊最新文献
Seasonal dynamics of range expansion in South American thrushes. Watershed-scale dispersal patterns of juvenile Chinook Salmon (Oncorhynchus tshawytscha) revealed through genetic parentage analysis. Spatial and temporal predictability drive foraging movements of coastal birds. How do red foxes (Vulpes vulpes) explore their environment? Characteristics of movement patterns in time and space. North American avian species that migrate in flocks show greater long-term non-breeding range shift rates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1