Non-collagenous Protein-inspired Hydrogels with Repeated Dicarboxylic Structure and High Matrix Strength for Amorphous Calcium Phosphate Stabilization to Promote Bone Defect Regeneration

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2025-02-13 DOI:10.1002/adfm.202500075
Yuchen Zhang, Zheng Liu, Wenqing Zhang, Xiaodan Zhao, Shaoyang Ma, Meng Li, Li Mei, Ang Li, Yilong Cheng, Dandan Pei
{"title":"Non-collagenous Protein-inspired Hydrogels with Repeated Dicarboxylic Structure and High Matrix Strength for Amorphous Calcium Phosphate Stabilization to Promote Bone Defect Regeneration","authors":"Yuchen Zhang, Zheng Liu, Wenqing Zhang, Xiaodan Zhao, Shaoyang Ma, Meng Li, Li Mei, Ang Li, Yilong Cheng, Dandan Pei","doi":"10.1002/adfm.202500075","DOIUrl":null,"url":null,"abstract":"Amorphous calcium phosphate (ACP) as a bone mineral precursor shows vast potential in the treatment of bone defects; however, its strong propensity to crystallize presents a major challenge during therapeutic applications. To mimic the in vivo stabilization of ACP by non-collagenous proteins, an advanced polymer hydrogel (PAASP hydrogel) with unique repeated dicarboxylic units and high mechanical matrix strength is developed to stabilize ACP for cranial defect treatment. The synergy of high calcium ions chelation strength and hydrogen bonds toughened network in PAASP hydrogel can significantly delay the crystallization process of calcium phosphate and retard hydroxyapatite (HAP) formation, which leads to fast ions release to induce osteogenic differentiation, angiogenesis, collagen mineralization, and fast mineral apposition. In vivo, early osteogenic evaluation reveals that the PAASP hydrogel with stabilized ACP mediates the fastest mineral apposition rate and the largest diameter of collagen fibrils in the bone defect zone. Compared to the widely-used HAP-loaded hydrogel (new bone coverage ratio of 53%), the ACP-loaded PAASP hydrogel can obviously promote new bone formation with a new bone coverage ratio of 88% in a rat cranial defect model. This work advances the current understanding of ACP stabilization and offers valuable insights for designing ACP-based bone regeneration materials.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"14 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202500075","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Amorphous calcium phosphate (ACP) as a bone mineral precursor shows vast potential in the treatment of bone defects; however, its strong propensity to crystallize presents a major challenge during therapeutic applications. To mimic the in vivo stabilization of ACP by non-collagenous proteins, an advanced polymer hydrogel (PAASP hydrogel) with unique repeated dicarboxylic units and high mechanical matrix strength is developed to stabilize ACP for cranial defect treatment. The synergy of high calcium ions chelation strength and hydrogen bonds toughened network in PAASP hydrogel can significantly delay the crystallization process of calcium phosphate and retard hydroxyapatite (HAP) formation, which leads to fast ions release to induce osteogenic differentiation, angiogenesis, collagen mineralization, and fast mineral apposition. In vivo, early osteogenic evaluation reveals that the PAASP hydrogel with stabilized ACP mediates the fastest mineral apposition rate and the largest diameter of collagen fibrils in the bone defect zone. Compared to the widely-used HAP-loaded hydrogel (new bone coverage ratio of 53%), the ACP-loaded PAASP hydrogel can obviously promote new bone formation with a new bone coverage ratio of 88% in a rat cranial defect model. This work advances the current understanding of ACP stabilization and offers valuable insights for designing ACP-based bone regeneration materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Issue Information Assessment of “Inverse” Cross-Talk (Anode to Cathode) in High-Voltage Li/Mn-Rich Layered Oxide || Li Cells (Adv. Funct. Mater. 7/2025) Photothermal-Electric Excited Droplet Multibehavioral Manipulation (Adv. Funct. Mater. 7/2025) InAs on Insulator: A New Platform for Cryogenic Hybrid Superconducting Electronics (Adv. Funct. Mater. 7/2025) Tailoring the Tunneling-Effect-Boosted Interfacial Charge Trapping via Effective Conjugation Length (Adv. Funct. Mater. 7/2025)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1