{"title":"Carbon dioxide–induced acidification enhances short‐lived brominated hydrocarbons production in oligotrophic oceans","authors":"Ya‐Wen Zou, Cheng‐Xuan Li, Qin‐Sheng Wei, Qian‐Yao Ma, Hui Ding, Xiao Meng Duan, Xing Zhai, Bao‐Dong Wang","doi":"10.1002/lno.70004","DOIUrl":null,"url":null,"abstract":"Oceanic emission is a primary source of brominated very short‐lived substances (BrVSLs) to the atmosphere, which have important effects on stratospheric ozone chemistry. Marine biogeochemical processes regulating BrVSLs are often sensitive to ocean acidification. Yet, the response of BrVSLs production to acidification remains poorly understood. Herein, the effects of acidification on the production of two main BrVSLs, dibromomethane (CH<jats:sub>2</jats:sub>Br<jats:sub>2</jats:sub>) and tribromomethane (CHBr<jats:sub>3</jats:sub>), were studied by ship‐based incubation experiments at three stations in the South Atlantic and Indian Oceans. The average CH<jats:sub>2</jats:sub>Br<jats:sub>2</jats:sub> and CHBr<jats:sub>3</jats:sub> concentrations increased by 17.2–58.7% and 14.3–80.3% due to acidification under the in situ nutrient conditions with nutrient and/or iron limitation at the three stations, but the mechanisms driving these increases varied among different regions. The increased bromoperoxidase (BrPO) activity caused by acidification facilitated BrVSLs release in the Eastern Tropical Indian Ocean, where diatoms were dominant. CHBr<jats:sub>3</jats:sub> increased due to acidification as a result of enhanced reactivity of dissolved organic matter (DOM) in the Eastern Tropical Atlantic, where dinoflagellates were dominant. Brominated very short‐lived substances increased due to acidification as a result of a combined effect of the above two mechanisms in the Benguela Current Coastal with high phytoplankton abundance. Under the nutrient and/or iron addition conditions with nutrient and iron sufficiency, however, acidification did not promote BrVSLs production due to its only minor effect on the BrPO activity and reactivity of DOM, partly because the effect of increased oxidative stress was offset by that of changed phytoplankton composition. Our study provided a basis for future modeling on the impact of acidification on global BrVSLs emissions.","PeriodicalId":18143,"journal":{"name":"Limnology and Oceanography","volume":"16 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/lno.70004","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Oceanic emission is a primary source of brominated very short‐lived substances (BrVSLs) to the atmosphere, which have important effects on stratospheric ozone chemistry. Marine biogeochemical processes regulating BrVSLs are often sensitive to ocean acidification. Yet, the response of BrVSLs production to acidification remains poorly understood. Herein, the effects of acidification on the production of two main BrVSLs, dibromomethane (CH2Br2) and tribromomethane (CHBr3), were studied by ship‐based incubation experiments at three stations in the South Atlantic and Indian Oceans. The average CH2Br2 and CHBr3 concentrations increased by 17.2–58.7% and 14.3–80.3% due to acidification under the in situ nutrient conditions with nutrient and/or iron limitation at the three stations, but the mechanisms driving these increases varied among different regions. The increased bromoperoxidase (BrPO) activity caused by acidification facilitated BrVSLs release in the Eastern Tropical Indian Ocean, where diatoms were dominant. CHBr3 increased due to acidification as a result of enhanced reactivity of dissolved organic matter (DOM) in the Eastern Tropical Atlantic, where dinoflagellates were dominant. Brominated very short‐lived substances increased due to acidification as a result of a combined effect of the above two mechanisms in the Benguela Current Coastal with high phytoplankton abundance. Under the nutrient and/or iron addition conditions with nutrient and iron sufficiency, however, acidification did not promote BrVSLs production due to its only minor effect on the BrPO activity and reactivity of DOM, partly because the effect of increased oxidative stress was offset by that of changed phytoplankton composition. Our study provided a basis for future modeling on the impact of acidification on global BrVSLs emissions.
期刊介绍:
Limnology and Oceanography (L&O; print ISSN 0024-3590, online ISSN 1939-5590) publishes original articles, including scholarly reviews, about all aspects of limnology and oceanography. The journal''s unifying theme is the understanding of aquatic systems. Submissions are judged on the originality of their data, interpretations, and ideas, and on the degree to which they can be generalized beyond the particular aquatic system examined. Laboratory and modeling studies must demonstrate relevance to field environments; typically this means that they are bolstered by substantial "real-world" data. Few purely theoretical or purely empirical papers are accepted for review.