{"title":"“Turn-on” Mode Fluorescence Detection of Amines Based on a Cationic Covalent Organic Framework Linked with C−C Single Bond","authors":"Xue-Nan Feng, Xiao-Yang Liu, Dong-Xiao Cao, Yun-Jie Zhou, Yun-Xi Cui, De-Ming Kong","doi":"10.1016/j.jhazmat.2025.137617","DOIUrl":null,"url":null,"abstract":"Developing methods to detect amine pollutants at trace levels is urgently needed due to their high toxicity to both human health and environment. Covalent organic frameworks (COFs) have emerged as promising candidates for amine sensing due to their exceptional stability when exposed to corrosive amines. While several COF-based sensors have recently been developed for amine detection, to the best of our knowledge, fluorescent “turn-on” sensors have been limited to imine-linked COFs. However, the relatively low stability of imine linkages may compromise structural integrity in the presence of corrosive amines. Here, for the first time, we constructed a cationic C−C single bond linked COF (CSBL-COF-4) through the reaction between cationic porphyrin TMPyP and terephthaldicarboxaldehyde. The abundant cationic sites distributing throughout the networks not only improved the dispersity of CSBL-COF-4 in aqueous solution but also provided numerous acidic sites to enhance the affinity with alkaline amines via Lewis acid-base interaction. CSBL-COF-4 exhibited an efficient response to amine solutions or vapors and was further utilized to evaluate the freshness of meat samples, highlighting its potential for practical applications. Our result would thus open up a new avenue towards constructing a broader class of COF-based sensors for the fluorescence “turn-on” detection of amines.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"62 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.137617","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Developing methods to detect amine pollutants at trace levels is urgently needed due to their high toxicity to both human health and environment. Covalent organic frameworks (COFs) have emerged as promising candidates for amine sensing due to their exceptional stability when exposed to corrosive amines. While several COF-based sensors have recently been developed for amine detection, to the best of our knowledge, fluorescent “turn-on” sensors have been limited to imine-linked COFs. However, the relatively low stability of imine linkages may compromise structural integrity in the presence of corrosive amines. Here, for the first time, we constructed a cationic C−C single bond linked COF (CSBL-COF-4) through the reaction between cationic porphyrin TMPyP and terephthaldicarboxaldehyde. The abundant cationic sites distributing throughout the networks not only improved the dispersity of CSBL-COF-4 in aqueous solution but also provided numerous acidic sites to enhance the affinity with alkaline amines via Lewis acid-base interaction. CSBL-COF-4 exhibited an efficient response to amine solutions or vapors and was further utilized to evaluate the freshness of meat samples, highlighting its potential for practical applications. Our result would thus open up a new avenue towards constructing a broader class of COF-based sensors for the fluorescence “turn-on” detection of amines.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.