Chiral perturbation theory and Bose-Einstein condensation in QCD

IF 5 2区 物理与天体物理 Q1 Physics and Astronomy Physical Review D Pub Date : 2025-02-12 DOI:10.1103/physrevd.111.034017
Jens O. Andersen, Martin Kjøllesdal Johnsrud, Qing Yu, Hua Zhou
{"title":"Chiral perturbation theory and Bose-Einstein condensation in QCD","authors":"Jens O. Andersen, Martin Kjøllesdal Johnsrud, Qing Yu, Hua Zhou","doi":"10.1103/physrevd.111.034017","DOIUrl":null,"url":null,"abstract":"We present recent results in three-flavor chiral perturbation theory at finite isospin μ</a:mi>I</a:mi></a:msub></a:math> and strangeness <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:msub><c:mi>μ</c:mi><c:mi>S</c:mi></c:msub></c:math> chemical potentials at zero temperature. The tree-level spectrum for the mesons and gauge bosons in the pion-condensed phase is derived. The phase diagram to <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mi mathvariant=\"script\">O</e:mi><e:mo stretchy=\"false\">(</e:mo><e:msup><e:mi>p</e:mi><e:mn>2</e:mn></e:msup><e:mo stretchy=\"false\">)</e:mo></e:math> in the <j:math xmlns:j=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><j:msub><j:mi>μ</j:mi><j:mi>I</j:mi></j:msub><j:mi>–</j:mi><j:msub><j:mi>μ</j:mi><j:mi>S</j:mi></j:msub></j:math> plane is mapped out with and without electromagnetic effects. The phase diagram consists of a vacuum phase and three Bose-condensed phases with condensates of <l:math xmlns:l=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><l:msup><l:mi>π</l:mi><l:mo>±</l:mo></l:msup></l:math>, <n:math xmlns:n=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><n:msup><n:mi>K</n:mi><n:mo>±</n:mo></n:msup></n:math>, and <p:math xmlns:p=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><p:msup><p:mi>K</p:mi><p:mn>0</p:mn></p:msup><p:mo>/</p:mo><p:msup><p:mover accent=\"true\"><p:mi>K</p:mi><p:mo stretchy=\"false\">¯</p:mo></p:mover><p:mn>0</p:mn></p:msup></p:math>, respectively. Including electromagnetic interactions, the charged Bose-condensed phases become Higgs phases via the Higgs mechanism. We calculate the pressure, energy density, isospin density, and speed of sound in the pion-condensed phase to <t:math xmlns:t=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><t:mi mathvariant=\"script\">O</t:mi><t:mo stretchy=\"false\">(</t:mo><t:msup><t:mi>p</t:mi><t:mn>4</t:mn></t:msup><t:mo stretchy=\"false\">)</t:mo></t:math>. The results are compared with recent lattice simulations and the agreement is very good for isospin chemical potentials up to approximately 180 MeV. Moreover, by integrating out the <y:math xmlns:y=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><y:mi>s</y:mi></y:math>-quark, we show that the thermodynamic quantities can be mapped onto their two-flavor counterparts with renormalized parameters. The breaking of the U(1) symmetry in the Bose-condensed phases gives rise to a Goldstone boson, whose dispersion is linear for small momenta. We use Son’s prescription to construct an effective theory for the Goldstone mode in the pion-condensed phase, which is valid for momenta p</ab:mi>≪</ab:mo>μ</ab:mi>I</ab:mi></ab:msub></ab:math>. It is shown that its damping rate is of order <cb:math xmlns:cb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><cb:msup><cb:mi>p</cb:mi><cb:mn>5</cb:mn></cb:msup></cb:math> in the nonrelativistic limit, which is Beliaev’s result for a dilute Bose gas. It is also shown that in the nonrelativistic limit the energy density can be matched onto the classic result by Lee, Huang and Yang (LHY) for a dilute Bose, with an <eb:math xmlns:eb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><eb:mi>s</eb:mi></eb:math>-wave scattering length that includes radiative corrections. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"8 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.034017","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We present recent results in three-flavor chiral perturbation theory at finite isospin μI and strangeness μS chemical potentials at zero temperature. The tree-level spectrum for the mesons and gauge bosons in the pion-condensed phase is derived. The phase diagram to O(p2) in the μIμS plane is mapped out with and without electromagnetic effects. The phase diagram consists of a vacuum phase and three Bose-condensed phases with condensates of π±, K±, and K0/K¯0, respectively. Including electromagnetic interactions, the charged Bose-condensed phases become Higgs phases via the Higgs mechanism. We calculate the pressure, energy density, isospin density, and speed of sound in the pion-condensed phase to O(p4). The results are compared with recent lattice simulations and the agreement is very good for isospin chemical potentials up to approximately 180 MeV. Moreover, by integrating out the s-quark, we show that the thermodynamic quantities can be mapped onto their two-flavor counterparts with renormalized parameters. The breaking of the U(1) symmetry in the Bose-condensed phases gives rise to a Goldstone boson, whose dispersion is linear for small momenta. We use Son’s prescription to construct an effective theory for the Goldstone mode in the pion-condensed phase, which is valid for momenta p≪μI. It is shown that its damping rate is of order p5 in the nonrelativistic limit, which is Beliaev’s result for a dilute Bose gas. It is also shown that in the nonrelativistic limit the energy density can be matched onto the classic result by Lee, Huang and Yang (LHY) for a dilute Bose, with an s-wave scattering length that includes radiative corrections. Published by the American Physical Society 2025
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
期刊最新文献
Center vortex evidence for a second finite-temperature QCD transition Absorptive effects in black hole scattering Top quark electroweak dipole moment at a high energy muon collider Holographic analysis of the pion Revisiting constraints on proton PDFs from HERA DIS, Drell-Yan, W and Z boson production, and projected EIC measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1