Tao Zhou, Jie Zhang, Yan Liang, Riliang Gu, Yuting Ma, Wanchao Zhu, Juan Li, Xuemei Du, Xiaoli Wang, Pingxi Wang, Yangyang Liu, Sihan Zhen, Junjie Fu, Lin Li, Hongwei Zhang
{"title":"Nonadditive regulation confers phenotypic variation in hybrid maize","authors":"Tao Zhou, Jie Zhang, Yan Liang, Riliang Gu, Yuting Ma, Wanchao Zhu, Juan Li, Xuemei Du, Xiaoli Wang, Pingxi Wang, Yangyang Liu, Sihan Zhen, Junjie Fu, Lin Li, Hongwei Zhang","doi":"10.1111/nph.20453","DOIUrl":null,"url":null,"abstract":"<p>\n</p><ul>\n<li>Our knowledge of how the parental genomes interact to shape hybrid performance remains limited.</li>\n<li>This work established four hybrid maize populations and evaluated plant height (PH) in both the parental and hybrid populations, generating an extensive transcriptome and translatome dataset. We conducted a genome-wide association study, expression quantitative trait locus (eQTLs) mapping, transcriptome-wide association mapping (TWAS), and allele-specific expression analysis to elucidate the regulatory mechanisms underlying PH variation in hybrids.</li>\n<li>QTLs, eQTLs, and TWAS-associated genes (TAGs) exhibited both distinct variations and conserved patterns between the maternal and hybrid populations. The functional route (FR)-following QTLs demonstrated significant nonadditive effects on PH and expression traits. The intergenomic interactions of eQTLs in the heterozygous state drive the nonadditive regulation of eQTL-regulated genes (eGenes), resulting in the transformation of eGenes into TAGs and eQTLs into nonadditive QTLs for PH. This regulatory mechanism is further supported by the nonadditive regulation of phytohormone-related genes. Additionally, nonadditive TAGs and QTLs are implicated in regulating nonadditive translation.</li>\n<li>This study elucidates how nonadditive QTLs contribute to phenotypic variation in hybrid maize, offering a fresh perspective on the understanding of plant heterosis.</li>\n</ul><p></p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"16 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.20453","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Our knowledge of how the parental genomes interact to shape hybrid performance remains limited.
This work established four hybrid maize populations and evaluated plant height (PH) in both the parental and hybrid populations, generating an extensive transcriptome and translatome dataset. We conducted a genome-wide association study, expression quantitative trait locus (eQTLs) mapping, transcriptome-wide association mapping (TWAS), and allele-specific expression analysis to elucidate the regulatory mechanisms underlying PH variation in hybrids.
QTLs, eQTLs, and TWAS-associated genes (TAGs) exhibited both distinct variations and conserved patterns between the maternal and hybrid populations. The functional route (FR)-following QTLs demonstrated significant nonadditive effects on PH and expression traits. The intergenomic interactions of eQTLs in the heterozygous state drive the nonadditive regulation of eQTL-regulated genes (eGenes), resulting in the transformation of eGenes into TAGs and eQTLs into nonadditive QTLs for PH. This regulatory mechanism is further supported by the nonadditive regulation of phytohormone-related genes. Additionally, nonadditive TAGs and QTLs are implicated in regulating nonadditive translation.
This study elucidates how nonadditive QTLs contribute to phenotypic variation in hybrid maize, offering a fresh perspective on the understanding of plant heterosis.
期刊介绍:
New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.