{"title":"Ion-dipole interaction manipulated bilateral interface chemistry for deep rechargeability and high redox activity of Zn-organic batteries","authors":"Yanyan Chen, Bowen Yin, Yinxiang Zeng, Hongfei Wang, Bin-Bin Xie, Deyan Luan, Yong Hu, Xiong Wen (David) Lou","doi":"10.1016/j.chempr.2025.102411","DOIUrl":null,"url":null,"abstract":"The practical application of Zn-based batteries is compromised by rampant dendrite growth, unfavorable side reactions, and serious capacity decay. We report a trifunctional glutarimide (Glu) electrolyte additive to stabilize the electrochemical reaction of the Zn anode and facilitate redox activity of the cathode. Theoretical calculations and spectroscopic characterizations reveal that Glu with the electron-withdrawing/donating capability can substitute partially coordinated water and manipulate the solvation structure by reinforced ion-dipole interactions. Meanwhile, Glu can form a solid electrolyte interphase layer and alleviate parasitic reactions. Consequently, Glu renders excellent Zn plating/stripping cycling of 2,000 h at 1 mA cm<sup>−2</sup>/1 mAh cm<sup>−2</sup>. Even at an ultra-high depth of discharge of 85.2%, a stable cycling of 138 h is obtained. The formulated additive serves as the charge redistributor and decouples the cation-anion interaction to stabilize the interaction of ClO<sub>4</sub><sup>−</sup> with the half-oxidized protonated polyaniline, enabling the Zn-organic battery with enhanced energy storage performance.","PeriodicalId":268,"journal":{"name":"Chem","volume":"50 1","pages":""},"PeriodicalIF":19.1000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.chempr.2025.102411","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The practical application of Zn-based batteries is compromised by rampant dendrite growth, unfavorable side reactions, and serious capacity decay. We report a trifunctional glutarimide (Glu) electrolyte additive to stabilize the electrochemical reaction of the Zn anode and facilitate redox activity of the cathode. Theoretical calculations and spectroscopic characterizations reveal that Glu with the electron-withdrawing/donating capability can substitute partially coordinated water and manipulate the solvation structure by reinforced ion-dipole interactions. Meanwhile, Glu can form a solid electrolyte interphase layer and alleviate parasitic reactions. Consequently, Glu renders excellent Zn plating/stripping cycling of 2,000 h at 1 mA cm−2/1 mAh cm−2. Even at an ultra-high depth of discharge of 85.2%, a stable cycling of 138 h is obtained. The formulated additive serves as the charge redistributor and decouples the cation-anion interaction to stabilize the interaction of ClO4− with the half-oxidized protonated polyaniline, enabling the Zn-organic battery with enhanced energy storage performance.
期刊介绍:
Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.