Spin-split Andreev bound states and diode effect in an Ising superconductor Josephson junction

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Physical Review B Pub Date : 2025-02-12 DOI:10.1103/physrevb.111.l060502
Sourabh Patil, Gaomin Tang, Wolfgang Belzig
{"title":"Spin-split Andreev bound states and diode effect in an Ising superconductor Josephson junction","authors":"Sourabh Patil, Gaomin Tang, Wolfgang Belzig","doi":"10.1103/physrevb.111.l060502","DOIUrl":null,"url":null,"abstract":"The transition-metal dichalcogenides featuring Ising spin-orbit coupling in so-called Ising superconductors offer a unique system to study the interplay of singlet and triplet superconductivity. The presence of high critical fields, spectral properties such as the mirage gap, and field-tunable charge and spin currents in Ising superconductor Josephson junctions are some of the important features. In this Letter, we study an Ising superconductor Josephson junction with a transparent interface and show that Andreev bound states are spin split due to a relative misorientation of in-plane fields in the superconducting contacts. Correspondingly, supercurrent-phase relations display a strongly nonsinusoidal behavior. Introducing additional spin-polarized channels with low transmission results in a nonreciprocal current-phase relation with a diode effect that can be tuned by the in-plane exchange fields. The diode efficiency reaches high values of the order of 40% and is not sensitive to disorder in the junction. Such structures can be realized in van der Waals heterostructures of two-dimensional superconductors and magnets. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"2 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.111.l060502","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

The transition-metal dichalcogenides featuring Ising spin-orbit coupling in so-called Ising superconductors offer a unique system to study the interplay of singlet and triplet superconductivity. The presence of high critical fields, spectral properties such as the mirage gap, and field-tunable charge and spin currents in Ising superconductor Josephson junctions are some of the important features. In this Letter, we study an Ising superconductor Josephson junction with a transparent interface and show that Andreev bound states are spin split due to a relative misorientation of in-plane fields in the superconducting contacts. Correspondingly, supercurrent-phase relations display a strongly nonsinusoidal behavior. Introducing additional spin-polarized channels with low transmission results in a nonreciprocal current-phase relation with a diode effect that can be tuned by the in-plane exchange fields. The diode efficiency reaches high values of the order of 40% and is not sensitive to disorder in the junction. Such structures can be realized in van der Waals heterostructures of two-dimensional superconductors and magnets. Published by the American Physical Society 2025
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
期刊最新文献
Transition between light-induced attraction and repulsion of nanoparticles on a lithium niobate surface Spin-split Andreev bound states and diode effect in an Ising superconductor Josephson junction Separating spin dynamics modes in iron oxide nanoparticles Magnetic properties of the zigzag ladder compound SrTb2O4 Electron irradiation effects on monolayer MoS2 at elevated temperatures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1