Rational design of surface termination of Ti3C2T2 MXenes for lithium-ion battery anodes

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL Physical Chemistry Chemical Physics Pub Date : 2025-02-13 DOI:10.1039/d4cp04583a
Meng Tian
{"title":"Rational design of surface termination of Ti3C2T2 MXenes for lithium-ion battery anodes","authors":"Meng Tian","doi":"10.1039/d4cp04583a","DOIUrl":null,"url":null,"abstract":"Two-dimensional transition metal carbides, carbonitrides and nitrides (MXenes) have garnered increasing interest in the energy storage field due to their unique structural and electronic properties. However, the application performance is highly reliant on the surface termination, which is poorly understood from a chemical standpoint. In this work, the structural stability, chemical origin, electronic structure and lithium-ion (Li-ion) storage properties of 15 nonmetal terminated MXenes in the form of Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub>2</sub></small> (T = B, C, Si, N, P, As, O, S, Se, Te, F, Cl, Br, I and OH) were investigated using first-principles calculations. The results indicate that the partially occupied d-orbital and zero pseudogap lead to the high chemical activity of surface Ti, and that surface terminations can diminish its chemical activity. Furthermore, a large pseudogap of the d-orbital promotes the structural stability of Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub>2</sub></small>. A useful descriptor, the antibonding state (<em>E</em><small><sub>σ*</sub></small>), was proposed to predict Li-ion adsorption energy. Combining the good electronic conductivity, high lithophilicity, low Li-ion diffusion barrier and high specific capacity, Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>As<small><sub>2</sub></small>, Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>S<small><sub>2</sub></small> and Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>Se<small><sub>2</sub></small> are considered as promising anode candidates for Li-ion batteries. Additionally, S, Se and As doping can improve the Li-ion storage performance of oxygen terminated Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>O<small><sub>2</sub></small>. This work offers insights into the chemical origin of the surface termination and paves the way for designing excellent Li-ion anode candidates based on MXenes.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"32 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cp04583a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional transition metal carbides, carbonitrides and nitrides (MXenes) have garnered increasing interest in the energy storage field due to their unique structural and electronic properties. However, the application performance is highly reliant on the surface termination, which is poorly understood from a chemical standpoint. In this work, the structural stability, chemical origin, electronic structure and lithium-ion (Li-ion) storage properties of 15 nonmetal terminated MXenes in the form of Ti3C2T2 (T = B, C, Si, N, P, As, O, S, Se, Te, F, Cl, Br, I and OH) were investigated using first-principles calculations. The results indicate that the partially occupied d-orbital and zero pseudogap lead to the high chemical activity of surface Ti, and that surface terminations can diminish its chemical activity. Furthermore, a large pseudogap of the d-orbital promotes the structural stability of Ti3C2T2. A useful descriptor, the antibonding state (Eσ*), was proposed to predict Li-ion adsorption energy. Combining the good electronic conductivity, high lithophilicity, low Li-ion diffusion barrier and high specific capacity, Ti3C2As2, Ti3C2S2 and Ti3C2Se2 are considered as promising anode candidates for Li-ion batteries. Additionally, S, Se and As doping can improve the Li-ion storage performance of oxygen terminated Ti3C2O2. This work offers insights into the chemical origin of the surface termination and paves the way for designing excellent Li-ion anode candidates based on MXenes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
期刊最新文献
Rational design of surface termination of Ti3C2T2 MXenes for lithium-ion battery anodes Anti-Kasha’s rule for semiconductor photocatalytic reactions: The wavelength dependence of quantum efficiency Polarized molecular wires for efficient photo-generation of free electric charge carriers Ga Adlayer Model: Capturing Features of GaN(0001) Growth from Submonolayer to Multilayer Regime Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1