Assessment and Mitigation of Heavy Toxic Elements with Emphasis on Uranium in the Malwa Region of Punjab, India

IF 4.8 Q1 ENVIRONMENTAL SCIENCES ACS ES&T water Pub Date : 2025-02-04 DOI:10.1021/acsestwater.4c0090010.1021/acsestwater.4c00900
Neeraj Chauhan, Stefan Krause*, Jaswant Singh, Reza Dehbandi, Pavitra V. Kumar, Pankaj Kumar, Amrit Pal Toor and Alok Srivastava, 
{"title":"Assessment and Mitigation of Heavy Toxic Elements with Emphasis on Uranium in the Malwa Region of Punjab, India","authors":"Neeraj Chauhan,&nbsp;Stefan Krause*,&nbsp;Jaswant Singh,&nbsp;Reza Dehbandi,&nbsp;Pavitra V. Kumar,&nbsp;Pankaj Kumar,&nbsp;Amrit Pal Toor and Alok Srivastava,&nbsp;","doi":"10.1021/acsestwater.4c0090010.1021/acsestwater.4c00900","DOIUrl":null,"url":null,"abstract":"<p >The Malwa region of Punjab, India, is witnessing an increase in cancer patients, but the origin of high uranium concentrations in groundwater remains unclear. In this study, 91 groundwater samples from the Malwa region were analyzed using ion chromatography for cations and anions and inductively coupled plasma–mass spectrometry for heavy element concentrations. Uranium concentrations ranged from 1.13 to 299.40 μg/L (mean: 54.03 μg/L), with 73% of samples exceeding the permissible limit of 30 μg/L for uranium in drinking water prescribed by the Bureau of Indian Standards and the World Health Organization. Elevated arsenic and selenium levels were observed in 3 and 10% of the samples. The groundwater primarily was of Mg-HCO<sub>3</sub> type and alkaline due to silicate and carbonate rock weathering. Cluster analysis grouped uranium with nitrate, sodium, and potassium, indicating interconnected behavior. Spearman correlation analysis showed correlations of uranium with electrical conductivity, total dissolved solids, alkalinity, nitrate, sulfate, sodium, and potassium, suggesting salt-induced ion competition as the primary cause of uranium mobilization. Hydrogeochemical correlations showed that geogenic factors like rock water interactions, carbonic water type, and mineral saturation influence uranium mobilization. This study demonstrates that hydrogeochemical analysis can provide insights into drivers and the potential origin of uranium.</p><p >Uranium concentrations in groundwater of the Malwa region in the Punjab state, one of India’s most important agricultural production areas, are critically elevated. Hydrogeochemical analysis reveals mechanisms of uranium mobilization and potential mitigation options.</p>","PeriodicalId":93847,"journal":{"name":"ACS ES&T water","volume":"5 2","pages":"838–850 838–850"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsestwater.4c00900","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T water","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestwater.4c00900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The Malwa region of Punjab, India, is witnessing an increase in cancer patients, but the origin of high uranium concentrations in groundwater remains unclear. In this study, 91 groundwater samples from the Malwa region were analyzed using ion chromatography for cations and anions and inductively coupled plasma–mass spectrometry for heavy element concentrations. Uranium concentrations ranged from 1.13 to 299.40 μg/L (mean: 54.03 μg/L), with 73% of samples exceeding the permissible limit of 30 μg/L for uranium in drinking water prescribed by the Bureau of Indian Standards and the World Health Organization. Elevated arsenic and selenium levels were observed in 3 and 10% of the samples. The groundwater primarily was of Mg-HCO3 type and alkaline due to silicate and carbonate rock weathering. Cluster analysis grouped uranium with nitrate, sodium, and potassium, indicating interconnected behavior. Spearman correlation analysis showed correlations of uranium with electrical conductivity, total dissolved solids, alkalinity, nitrate, sulfate, sodium, and potassium, suggesting salt-induced ion competition as the primary cause of uranium mobilization. Hydrogeochemical correlations showed that geogenic factors like rock water interactions, carbonic water type, and mineral saturation influence uranium mobilization. This study demonstrates that hydrogeochemical analysis can provide insights into drivers and the potential origin of uranium.

Uranium concentrations in groundwater of the Malwa region in the Punjab state, one of India’s most important agricultural production areas, are critically elevated. Hydrogeochemical analysis reveals mechanisms of uranium mobilization and potential mitigation options.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
0
期刊最新文献
Issue Editorial Masthead Issue Publication Information Rinse, Recover, Repeat: pH-Assisted Selective Extraction of Phosphate and Metals with a Sponge Nanocomposite Mitigating Wildfire Impact on Water Quality through Climate-Based Financing: A Case Study of the Provo River Watershed Assessment and Mitigation of Heavy Toxic Elements with Emphasis on Uranium in the Malwa Region of Punjab, India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1