Vladimir Sayevich, Whi Dong Kim, Zachary L. Robinson, Oleg V. Kozlov, Clément Livache, Namyoung Ahn, Heeyoung Jung and Victor I. Klimov*,
{"title":"Inverted CdSe/PbSe Core/Shell Quantum Dots with Electrically Accessible Photocarriers","authors":"Vladimir Sayevich, Whi Dong Kim, Zachary L. Robinson, Oleg V. Kozlov, Clément Livache, Namyoung Ahn, Heeyoung Jung and Victor I. Klimov*, ","doi":"10.1021/acsenergylett.4c0350210.1021/acsenergylett.4c03502","DOIUrl":null,"url":null,"abstract":"<p >Heterostructured quantum dots (QDs) based on narrow-bandgap PbSe and wide-bandgap CdSe have been studied for applications in near-infrared light sources, photodetection, and solar energy conversion. A common structural motif is a QD consisting of a PbSe core enclosed in a CdSe shell. However, the CdSe shell complicates extraction of band-edge charge carriers from the QD. Therefore, conventional PbSe/CdSe QDs are not suitable for application in photoelectric devices. Here we report inverted CdSe/PbSe core/shell QDs that overcome this drawback. In these structures, both the electron and hole exhibit a significant degree of shell localization and can therefore be easily extracted from the QD. To create these structures, we employ a thin, atomically controlled wetting layer that homogenizes the CdSe core surface and thus promotes directionally uniform growth of the PbSe shell. The synthesized CdSe/PbSe QD films exhibit good photocarrier transport, making them suitable for application in photoelectric devices.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"10 2","pages":"1062–1071 1062–1071"},"PeriodicalIF":19.3000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsenergylett.4c03502","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.4c03502","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Heterostructured quantum dots (QDs) based on narrow-bandgap PbSe and wide-bandgap CdSe have been studied for applications in near-infrared light sources, photodetection, and solar energy conversion. A common structural motif is a QD consisting of a PbSe core enclosed in a CdSe shell. However, the CdSe shell complicates extraction of band-edge charge carriers from the QD. Therefore, conventional PbSe/CdSe QDs are not suitable for application in photoelectric devices. Here we report inverted CdSe/PbSe core/shell QDs that overcome this drawback. In these structures, both the electron and hole exhibit a significant degree of shell localization and can therefore be easily extracted from the QD. To create these structures, we employ a thin, atomically controlled wetting layer that homogenizes the CdSe core surface and thus promotes directionally uniform growth of the PbSe shell. The synthesized CdSe/PbSe QD films exhibit good photocarrier transport, making them suitable for application in photoelectric devices.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.