Design and retrofit towards zero-emission ships: Decarbonization solutions for sustainable shipping

IF 16.3 1区 工程技术 Q1 ENERGY & FUELS Renewable and Sustainable Energy Reviews Pub Date : 2025-02-14 DOI:10.1016/j.rser.2025.115384
Annamaria Buonomano , Gianluca Del Papa , Giovanni Francesco Giuzio , Robert Maka , Adolfo Palombo , Giuseppe Russo
{"title":"Design and retrofit towards zero-emission ships: Decarbonization solutions for sustainable shipping","authors":"Annamaria Buonomano ,&nbsp;Gianluca Del Papa ,&nbsp;Giovanni Francesco Giuzio ,&nbsp;Robert Maka ,&nbsp;Adolfo Palombo ,&nbsp;Giuseppe Russo","doi":"10.1016/j.rser.2025.115384","DOIUrl":null,"url":null,"abstract":"<div><div>The maritime transport sector is undergoing significant development to meet the stringent targets set by the International Maritime Organization and national regulations. An informed decision-making process is essential during the design of new ships or the refurbishment of existing ones, especially when selecting new technologies or implementing alternative fuels. This paper presents an approach based on dynamic simulation and multi-objective optimization aimed at identifying the technologies and strategies to be implemented on board. The methodology combines physics-based and data-driven modelling to enhance the performance and consumption assessment of ships under real-world conditions, using tools such as Autodesk Revit for 3D modelling, MatLab and Python for weather data customization, and TRNSYS for simulating the onboard energy system. Specifically, the analysis focuses on optimizing an existing cruise ship and integrating cutting-edge technologies, using measured ship operational data through a calibrated and validated model. Technologies such as single and double absorption chiller, wet steam screw expander and fuel cell are investigated to define a roadmap to their implementation towards energy and emission efficiency. The proposed methodology shows that significant reductions in pollutant emissions can be achieved by their optimization and implementation. Indeed, the use of bio-liquified natural gas to power fuel cells can lead to non-renewable primary energy savings of up to 16.8 %. The study also highlights the importance of future incentive policies for the development of cost-effective green fuels. This research underscores the necessity of innovative solutions to be properly optimized and designed to achieve substantial reductions in greenhouse gas emissions in the shipping sector.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":"213 ","pages":"Article 115384"},"PeriodicalIF":16.3000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Reviews","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364032125000577","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The maritime transport sector is undergoing significant development to meet the stringent targets set by the International Maritime Organization and national regulations. An informed decision-making process is essential during the design of new ships or the refurbishment of existing ones, especially when selecting new technologies or implementing alternative fuels. This paper presents an approach based on dynamic simulation and multi-objective optimization aimed at identifying the technologies and strategies to be implemented on board. The methodology combines physics-based and data-driven modelling to enhance the performance and consumption assessment of ships under real-world conditions, using tools such as Autodesk Revit for 3D modelling, MatLab and Python for weather data customization, and TRNSYS for simulating the onboard energy system. Specifically, the analysis focuses on optimizing an existing cruise ship and integrating cutting-edge technologies, using measured ship operational data through a calibrated and validated model. Technologies such as single and double absorption chiller, wet steam screw expander and fuel cell are investigated to define a roadmap to their implementation towards energy and emission efficiency. The proposed methodology shows that significant reductions in pollutant emissions can be achieved by their optimization and implementation. Indeed, the use of bio-liquified natural gas to power fuel cells can lead to non-renewable primary energy savings of up to 16.8 %. The study also highlights the importance of future incentive policies for the development of cost-effective green fuels. This research underscores the necessity of innovative solutions to be properly optimized and designed to achieve substantial reductions in greenhouse gas emissions in the shipping sector.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Renewable and Sustainable Energy Reviews
Renewable and Sustainable Energy Reviews 工程技术-能源与燃料
CiteScore
31.20
自引率
5.70%
发文量
1055
审稿时长
62 days
期刊介绍: The mission of Renewable and Sustainable Energy Reviews is to disseminate the most compelling and pertinent critical insights in renewable and sustainable energy, fostering collaboration among the research community, private sector, and policy and decision makers. The journal aims to exchange challenges, solutions, innovative concepts, and technologies, contributing to sustainable development, the transition to a low-carbon future, and the attainment of emissions targets outlined by the United Nations Framework Convention on Climate Change. Renewable and Sustainable Energy Reviews publishes a diverse range of content, including review papers, original research, case studies, and analyses of new technologies, all featuring a substantial review component such as critique, comparison, or analysis. Introducing a distinctive paper type, Expert Insights, the journal presents commissioned mini-reviews authored by field leaders, addressing topics of significant interest. Case studies undergo consideration only if they showcase the work's applicability to other regions or contribute valuable insights to the broader field of renewable and sustainable energy. Notably, a bibliographic or literature review lacking critical analysis is deemed unsuitable for publication.
期刊最新文献
Promoting sustainable development goals through energy-related behaviors of household occupants: Fostering sustainable energy solutions in developing countries Regulatory sandbox for electric mobility: Enhancing charging infrastructure and innovation Carbon dioxide storage in clastic rocks: Review and perspectives Editorial Board Advancements in flexible perovskite solar cells enabling self-powered systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1