Annamaria Buonomano , Gianluca Del Papa , Giovanni Francesco Giuzio , Robert Maka , Adolfo Palombo , Giuseppe Russo
{"title":"Design and retrofit towards zero-emission ships: Decarbonization solutions for sustainable shipping","authors":"Annamaria Buonomano , Gianluca Del Papa , Giovanni Francesco Giuzio , Robert Maka , Adolfo Palombo , Giuseppe Russo","doi":"10.1016/j.rser.2025.115384","DOIUrl":null,"url":null,"abstract":"<div><div>The maritime transport sector is undergoing significant development to meet the stringent targets set by the International Maritime Organization and national regulations. An informed decision-making process is essential during the design of new ships or the refurbishment of existing ones, especially when selecting new technologies or implementing alternative fuels. This paper presents an approach based on dynamic simulation and multi-objective optimization aimed at identifying the technologies and strategies to be implemented on board. The methodology combines physics-based and data-driven modelling to enhance the performance and consumption assessment of ships under real-world conditions, using tools such as Autodesk Revit for 3D modelling, MatLab and Python for weather data customization, and TRNSYS for simulating the onboard energy system. Specifically, the analysis focuses on optimizing an existing cruise ship and integrating cutting-edge technologies, using measured ship operational data through a calibrated and validated model. Technologies such as single and double absorption chiller, wet steam screw expander and fuel cell are investigated to define a roadmap to their implementation towards energy and emission efficiency. The proposed methodology shows that significant reductions in pollutant emissions can be achieved by their optimization and implementation. Indeed, the use of bio-liquified natural gas to power fuel cells can lead to non-renewable primary energy savings of up to 16.8 %. The study also highlights the importance of future incentive policies for the development of cost-effective green fuels. This research underscores the necessity of innovative solutions to be properly optimized and designed to achieve substantial reductions in greenhouse gas emissions in the shipping sector.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":"213 ","pages":"Article 115384"},"PeriodicalIF":16.3000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Reviews","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364032125000577","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The maritime transport sector is undergoing significant development to meet the stringent targets set by the International Maritime Organization and national regulations. An informed decision-making process is essential during the design of new ships or the refurbishment of existing ones, especially when selecting new technologies or implementing alternative fuels. This paper presents an approach based on dynamic simulation and multi-objective optimization aimed at identifying the technologies and strategies to be implemented on board. The methodology combines physics-based and data-driven modelling to enhance the performance and consumption assessment of ships under real-world conditions, using tools such as Autodesk Revit for 3D modelling, MatLab and Python for weather data customization, and TRNSYS for simulating the onboard energy system. Specifically, the analysis focuses on optimizing an existing cruise ship and integrating cutting-edge technologies, using measured ship operational data through a calibrated and validated model. Technologies such as single and double absorption chiller, wet steam screw expander and fuel cell are investigated to define a roadmap to their implementation towards energy and emission efficiency. The proposed methodology shows that significant reductions in pollutant emissions can be achieved by their optimization and implementation. Indeed, the use of bio-liquified natural gas to power fuel cells can lead to non-renewable primary energy savings of up to 16.8 %. The study also highlights the importance of future incentive policies for the development of cost-effective green fuels. This research underscores the necessity of innovative solutions to be properly optimized and designed to achieve substantial reductions in greenhouse gas emissions in the shipping sector.
期刊介绍:
The mission of Renewable and Sustainable Energy Reviews is to disseminate the most compelling and pertinent critical insights in renewable and sustainable energy, fostering collaboration among the research community, private sector, and policy and decision makers. The journal aims to exchange challenges, solutions, innovative concepts, and technologies, contributing to sustainable development, the transition to a low-carbon future, and the attainment of emissions targets outlined by the United Nations Framework Convention on Climate Change.
Renewable and Sustainable Energy Reviews publishes a diverse range of content, including review papers, original research, case studies, and analyses of new technologies, all featuring a substantial review component such as critique, comparison, or analysis. Introducing a distinctive paper type, Expert Insights, the journal presents commissioned mini-reviews authored by field leaders, addressing topics of significant interest. Case studies undergo consideration only if they showcase the work's applicability to other regions or contribute valuable insights to the broader field of renewable and sustainable energy. Notably, a bibliographic or literature review lacking critical analysis is deemed unsuitable for publication.