Highly Efficient Adsorption of Emerging Freshwater Saxitoxins with Graphene

IF 4.8 Q1 ENVIRONMENTAL SCIENCES ACS ES&T water Pub Date : 2025-01-09 DOI:10.1021/acsestwater.4c0093210.1021/acsestwater.4c00932
Jesse Leland Roberts*, Justin Puhnaty, Angela Evans, Sarah Grace Zetterholm, Taylor Massey, Jacob Lalley and Christopher Scott Griggs, 
{"title":"Highly Efficient Adsorption of Emerging Freshwater Saxitoxins with Graphene","authors":"Jesse Leland Roberts*,&nbsp;Justin Puhnaty,&nbsp;Angela Evans,&nbsp;Sarah Grace Zetterholm,&nbsp;Taylor Massey,&nbsp;Jacob Lalley and Christopher Scott Griggs,&nbsp;","doi":"10.1021/acsestwater.4c0093210.1021/acsestwater.4c00932","DOIUrl":null,"url":null,"abstract":"<p >The rapid proliferation of saxitoxin (STX)-producing cyanobacteria in freshwater ecosystems poses an emerging threat to global drinking water security. STXs (STX), produced by these harmful algal blooms, are a class of potent neurotoxic alkaloids that exhibit resistance to conventional water treatment processes like oxidation. Adsorption using carbon-based materials is recommended for STX removal, but current adsorbents have limited efficacy. Here, we demonstrate that mesoporous graphene nanoplatelets (GnPs) are a superior adsorbent for STX, outperforming granular activated carbon (GAC) and other benchmarks in both kinetics and capacity. GnPs achieved a 93.5-fold higher adsorption capacity and over 6-fold faster kinetics compared to GAC. The exceptional performance of GnPs is attributed to their high surface area, favorable surface chemistry, and optimized pore structure that facilitate rapid and extensive STX adsorption through π–π interactions, electrostatic attraction, and intraparticle diffusion. Mechanistic studies revealed a critical role of solution conditions, with higher pH and lower ionic strength enhancing STX removal by promoting electrostatic interactions. GnPs also demonstrated excellent performance in simulated field water, maintaining &gt;90% removal within 1 h even in the presence of competitive organics. This study highlights the immense potential of GnPs as an advanced adsorbent for mitigating the rising threat of STX contamination in drinking water.</p><p >Novel graphene-based adsorbents demonstrate exceptional removal of freshwater saxitoxins, offering promising solutions for emerging water contaminant treatment.</p>","PeriodicalId":93847,"journal":{"name":"ACS ES&T water","volume":"5 2","pages":"881–890 881–890"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsestwater.4c00932","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T water","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestwater.4c00932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid proliferation of saxitoxin (STX)-producing cyanobacteria in freshwater ecosystems poses an emerging threat to global drinking water security. STXs (STX), produced by these harmful algal blooms, are a class of potent neurotoxic alkaloids that exhibit resistance to conventional water treatment processes like oxidation. Adsorption using carbon-based materials is recommended for STX removal, but current adsorbents have limited efficacy. Here, we demonstrate that mesoporous graphene nanoplatelets (GnPs) are a superior adsorbent for STX, outperforming granular activated carbon (GAC) and other benchmarks in both kinetics and capacity. GnPs achieved a 93.5-fold higher adsorption capacity and over 6-fold faster kinetics compared to GAC. The exceptional performance of GnPs is attributed to their high surface area, favorable surface chemistry, and optimized pore structure that facilitate rapid and extensive STX adsorption through π–π interactions, electrostatic attraction, and intraparticle diffusion. Mechanistic studies revealed a critical role of solution conditions, with higher pH and lower ionic strength enhancing STX removal by promoting electrostatic interactions. GnPs also demonstrated excellent performance in simulated field water, maintaining >90% removal within 1 h even in the presence of competitive organics. This study highlights the immense potential of GnPs as an advanced adsorbent for mitigating the rising threat of STX contamination in drinking water.

Novel graphene-based adsorbents demonstrate exceptional removal of freshwater saxitoxins, offering promising solutions for emerging water contaminant treatment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
0
期刊最新文献
Issue Editorial Masthead Issue Publication Information Rinse, Recover, Repeat: pH-Assisted Selective Extraction of Phosphate and Metals with a Sponge Nanocomposite Mitigating Wildfire Impact on Water Quality through Climate-Based Financing: A Case Study of the Provo River Watershed Mitigating Wildfire Impact on Water Quality through Climate-Based Financing: A Case Study of the Provo River Watershed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1