{"title":"Spatial deep convolutional neural networks","authors":"Qi Wang, Paul A. Parker, Robert Lund","doi":"10.1016/j.spasta.2025.100883","DOIUrl":null,"url":null,"abstract":"<div><div>Spatial prediction problems often use Gaussian process models, which can be computationally burdensome in high dimensions. Specification of an appropriate covariance function for the model can be challenging when complex non-stationarities exist. Recent work has shown that pre-computed spatial basis functions and a feed-forward neural network can capture complex spatial dependence structures while remaining computationally efficient. This paper builds on this literature by tailoring spatial basis functions for use in convolutional neural networks. Through both simulated and real data, we demonstrate that this approach yields more accurate spatial predictions than existing methods. Uncertainty quantification is also considered.</div></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":"66 ","pages":"Article 100883"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675325000053","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Spatial prediction problems often use Gaussian process models, which can be computationally burdensome in high dimensions. Specification of an appropriate covariance function for the model can be challenging when complex non-stationarities exist. Recent work has shown that pre-computed spatial basis functions and a feed-forward neural network can capture complex spatial dependence structures while remaining computationally efficient. This paper builds on this literature by tailoring spatial basis functions for use in convolutional neural networks. Through both simulated and real data, we demonstrate that this approach yields more accurate spatial predictions than existing methods. Uncertainty quantification is also considered.
期刊介绍:
Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication.
Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.