Dongdong He , Ying Yang , Andrea Morichetta , Jianjun Wu
{"title":"Drone to recharge electric vehicles: Operations, benefits, and challenges","authors":"Dongdong He , Ying Yang , Andrea Morichetta , Jianjun Wu","doi":"10.1016/j.commtr.2025.100162","DOIUrl":null,"url":null,"abstract":"<div><div>Electric vehicles (EVs) are a promising solution to reduce greenhouse gas emissions and foster sustainable urban transportation. However, the widespread adoption of EVs is hindered by range anxiety and the fear of running outnqt of battery before reaching a charging station. To address this challenge, we propose a novel drone-to-vehicle (D2V) charging system, which leverages drones as mobile charging units to provide on-the-go recharging services for EVs. This study explores the operational and technical aspects of the D2V system, including drone charging docks, order-dispatching strategies, and dynamic drone reallocation mechanisms. A key contribution is to introduce a concept of the adaptive route meetup location selection (ARMLS), which optimizes drone dispatch and pricing models based on real-time parameters such as distance, battery levels, and traffic conditions. Our analysis highlights the potential of D2V systems to alleviate range anxiety, enhance road network efficiency through dynamic traffic redistribution, and reduce carbon emissions by integrating renewable energy sources. The study suggests that implementing D2V services can significantly improve the reliability of EVs in critical situations while fostering broader EV adoption. Future work will focus on reinforcement learning-based optimization algorithms to further improve drone operations and address scalability challenges. The proposed D2V system represents a crucial step toward a sustainable and efficient urban mobility future.</div></div>","PeriodicalId":100292,"journal":{"name":"Communications in Transportation Research","volume":"5 ","pages":"Article 100162"},"PeriodicalIF":12.5000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Transportation Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772424725000022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Electric vehicles (EVs) are a promising solution to reduce greenhouse gas emissions and foster sustainable urban transportation. However, the widespread adoption of EVs is hindered by range anxiety and the fear of running outnqt of battery before reaching a charging station. To address this challenge, we propose a novel drone-to-vehicle (D2V) charging system, which leverages drones as mobile charging units to provide on-the-go recharging services for EVs. This study explores the operational and technical aspects of the D2V system, including drone charging docks, order-dispatching strategies, and dynamic drone reallocation mechanisms. A key contribution is to introduce a concept of the adaptive route meetup location selection (ARMLS), which optimizes drone dispatch and pricing models based on real-time parameters such as distance, battery levels, and traffic conditions. Our analysis highlights the potential of D2V systems to alleviate range anxiety, enhance road network efficiency through dynamic traffic redistribution, and reduce carbon emissions by integrating renewable energy sources. The study suggests that implementing D2V services can significantly improve the reliability of EVs in critical situations while fostering broader EV adoption. Future work will focus on reinforcement learning-based optimization algorithms to further improve drone operations and address scalability challenges. The proposed D2V system represents a crucial step toward a sustainable and efficient urban mobility future.