Mohammed A. Esmail , Jinlei Wang , Yihao Wang , Li Sun , Guoliang Zhu , Guohe Zhang
{"title":"Resource-aware strategies for real-time multi-person pose estimation","authors":"Mohammed A. Esmail , Jinlei Wang , Yihao Wang , Li Sun , Guoliang Zhu , Guohe Zhang","doi":"10.1016/j.imavis.2025.105441","DOIUrl":null,"url":null,"abstract":"<div><div>When using deep learning applications for human posture estimation (HPE), especially on devices with limited resources, accuracy and efficiency must be balanced. Common deep-learning architectures have a propensity to use a large amount of processing power while yielding low accuracy. This work proposes the implementation of Efficient YoloPose, a new architecture based on You Only Look Once version 8 (YOLOv8)-Pose, in an attempt to address these issues. Advanced lightweight methods like Depthwise Convolution, Ghost Convolution, and the C3Ghost module are used by Efficient YoloPose to replace traditional convolution and C2f (a quicker implementation of the Cross Stage Partial Bottleneck). This approach greatly decreases the inference, parameter count, and computing complexity. To improve posture estimation even further, Efficient YoloPose integrates the Squeeze Excitation (SE) attention method into the network. The main focus of this process during posture estimation is the significant areas of an image. Experimental results show that the suggested model performs better than the current models on the COCO and OCHuman datasets. The proposed model lowers the inference time from 1.1 milliseconds (ms) to 0.9 ms, the computational complexity from 9.2 Giga Floating-point operations (GFlops) to 4.8 GFlops and the parameter count from 3.3 million to 1.3 million when compared to YOLOv8-Pose. In addition, this model maintains an average precision (AP) score of 78.8 on the COCO dataset. The source code for Efficient YoloPose has been made publicly available at [<span><span>https://github.com/malareeqi/Efficient-YoloPose</span><svg><path></path></svg></span>].</div></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"155 ","pages":"Article 105441"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885625000290","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
When using deep learning applications for human posture estimation (HPE), especially on devices with limited resources, accuracy and efficiency must be balanced. Common deep-learning architectures have a propensity to use a large amount of processing power while yielding low accuracy. This work proposes the implementation of Efficient YoloPose, a new architecture based on You Only Look Once version 8 (YOLOv8)-Pose, in an attempt to address these issues. Advanced lightweight methods like Depthwise Convolution, Ghost Convolution, and the C3Ghost module are used by Efficient YoloPose to replace traditional convolution and C2f (a quicker implementation of the Cross Stage Partial Bottleneck). This approach greatly decreases the inference, parameter count, and computing complexity. To improve posture estimation even further, Efficient YoloPose integrates the Squeeze Excitation (SE) attention method into the network. The main focus of this process during posture estimation is the significant areas of an image. Experimental results show that the suggested model performs better than the current models on the COCO and OCHuman datasets. The proposed model lowers the inference time from 1.1 milliseconds (ms) to 0.9 ms, the computational complexity from 9.2 Giga Floating-point operations (GFlops) to 4.8 GFlops and the parameter count from 3.3 million to 1.3 million when compared to YOLOv8-Pose. In addition, this model maintains an average precision (AP) score of 78.8 on the COCO dataset. The source code for Efficient YoloPose has been made publicly available at [https://github.com/malareeqi/Efficient-YoloPose].
期刊介绍:
Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.