Resource-aware strategies for real-time multi-person pose estimation

IF 4.2 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Image and Vision Computing Pub Date : 2025-02-07 DOI:10.1016/j.imavis.2025.105441
Mohammed A. Esmail , Jinlei Wang , Yihao Wang , Li Sun , Guoliang Zhu , Guohe Zhang
{"title":"Resource-aware strategies for real-time multi-person pose estimation","authors":"Mohammed A. Esmail ,&nbsp;Jinlei Wang ,&nbsp;Yihao Wang ,&nbsp;Li Sun ,&nbsp;Guoliang Zhu ,&nbsp;Guohe Zhang","doi":"10.1016/j.imavis.2025.105441","DOIUrl":null,"url":null,"abstract":"<div><div>When using deep learning applications for human posture estimation (HPE), especially on devices with limited resources, accuracy and efficiency must be balanced. Common deep-learning architectures have a propensity to use a large amount of processing power while yielding low accuracy. This work proposes the implementation of Efficient YoloPose, a new architecture based on You Only Look Once version 8 (YOLOv8)-Pose, in an attempt to address these issues. Advanced lightweight methods like Depthwise Convolution, Ghost Convolution, and the C3Ghost module are used by Efficient YoloPose to replace traditional convolution and C2f (a quicker implementation of the Cross Stage Partial Bottleneck). This approach greatly decreases the inference, parameter count, and computing complexity. To improve posture estimation even further, Efficient YoloPose integrates the Squeeze Excitation (SE) attention method into the network. The main focus of this process during posture estimation is the significant areas of an image. Experimental results show that the suggested model performs better than the current models on the COCO and OCHuman datasets. The proposed model lowers the inference time from 1.1 milliseconds (ms) to 0.9 ms, the computational complexity from 9.2 Giga Floating-point operations (GFlops) to 4.8 GFlops and the parameter count from 3.3 million to 1.3 million when compared to YOLOv8-Pose. In addition, this model maintains an average precision (AP) score of 78.8 on the COCO dataset. The source code for Efficient YoloPose has been made publicly available at [<span><span>https://github.com/malareeqi/Efficient-YoloPose</span><svg><path></path></svg></span>].</div></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"155 ","pages":"Article 105441"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885625000290","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

When using deep learning applications for human posture estimation (HPE), especially on devices with limited resources, accuracy and efficiency must be balanced. Common deep-learning architectures have a propensity to use a large amount of processing power while yielding low accuracy. This work proposes the implementation of Efficient YoloPose, a new architecture based on You Only Look Once version 8 (YOLOv8)-Pose, in an attempt to address these issues. Advanced lightweight methods like Depthwise Convolution, Ghost Convolution, and the C3Ghost module are used by Efficient YoloPose to replace traditional convolution and C2f (a quicker implementation of the Cross Stage Partial Bottleneck). This approach greatly decreases the inference, parameter count, and computing complexity. To improve posture estimation even further, Efficient YoloPose integrates the Squeeze Excitation (SE) attention method into the network. The main focus of this process during posture estimation is the significant areas of an image. Experimental results show that the suggested model performs better than the current models on the COCO and OCHuman datasets. The proposed model lowers the inference time from 1.1 milliseconds (ms) to 0.9 ms, the computational complexity from 9.2 Giga Floating-point operations (GFlops) to 4.8 GFlops and the parameter count from 3.3 million to 1.3 million when compared to YOLOv8-Pose. In addition, this model maintains an average precision (AP) score of 78.8 on the COCO dataset. The source code for Efficient YoloPose has been made publicly available at [https://github.com/malareeqi/Efficient-YoloPose].

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Image and Vision Computing
Image and Vision Computing 工程技术-工程:电子与电气
CiteScore
8.50
自引率
8.50%
发文量
143
审稿时长
7.8 months
期刊介绍: Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.
期刊最新文献
AHA-track: Aggregating hierarchical awareness features for single Resource-aware strategies for real-time multi-person pose estimation A small object detection model for drone images based on multi-attention fusion network Editorial Board Pixel integration from fine to coarse for lightweight image super-resolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1