{"title":"Evaluating the role of additive manufacturing in adobe brick enhancement: A comparative study","authors":"Shaimaa Tarek , Yasser Mansour , Sherif Abdelmohsen , Mohamed Kohail , Ayman Assem","doi":"10.1016/j.asej.2025.103298","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid integration of additive manufacturing in construction, alongside a focus on sustainability, has revived interest in earth materials within modern building practices. Adobe brick, noted for its structural and thermal properties, is among the most studied earth-construction techniques for contemporary use. However, the potential of 3D-printed adobe bricks in construction remains underexplored, particularly in optimizing their structural performance. This study examines the impact of Triply Periodic Minimal Surface (TPMS) infill geometries on the compressive strength of locally sourced, air-dried 3D-printed adobe bricks. Specimens were designed as single-cell surfaces enclosed within 6 cm cubes and tested against traditional solid samples. Results revealed a significant strength increase in 3D-printed bricks using PW-hybrid infills, with compressive strengths reaching 3.10 MPa for a 2.5 mm layer height—nearly double the 1.65 MPa of molded samples. These findings highlight the potential of combining sustainable materials with advanced manufacturing techniques to enhance construction practices.</div></div>","PeriodicalId":48648,"journal":{"name":"Ain Shams Engineering Journal","volume":"16 3","pages":"Article 103298"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ain Shams Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2090447925000395","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid integration of additive manufacturing in construction, alongside a focus on sustainability, has revived interest in earth materials within modern building practices. Adobe brick, noted for its structural and thermal properties, is among the most studied earth-construction techniques for contemporary use. However, the potential of 3D-printed adobe bricks in construction remains underexplored, particularly in optimizing their structural performance. This study examines the impact of Triply Periodic Minimal Surface (TPMS) infill geometries on the compressive strength of locally sourced, air-dried 3D-printed adobe bricks. Specimens were designed as single-cell surfaces enclosed within 6 cm cubes and tested against traditional solid samples. Results revealed a significant strength increase in 3D-printed bricks using PW-hybrid infills, with compressive strengths reaching 3.10 MPa for a 2.5 mm layer height—nearly double the 1.65 MPa of molded samples. These findings highlight the potential of combining sustainable materials with advanced manufacturing techniques to enhance construction practices.
期刊介绍:
in Shams Engineering Journal is an international journal devoted to publication of peer reviewed original high-quality research papers and review papers in both traditional topics and those of emerging science and technology. Areas of both theoretical and fundamental interest as well as those concerning industrial applications, emerging instrumental techniques and those which have some practical application to an aspect of human endeavor, such as the preservation of the environment, health, waste disposal are welcome. The overall focus is on original and rigorous scientific research results which have generic significance.
Ain Shams Engineering Journal focuses upon aspects of mechanical engineering, electrical engineering, civil engineering, chemical engineering, petroleum engineering, environmental engineering, architectural and urban planning engineering. Papers in which knowledge from other disciplines is integrated with engineering are especially welcome like nanotechnology, material sciences, and computational methods as well as applied basic sciences: engineering mathematics, physics and chemistry.