Preparation of high-performance and environmentally friendly superfine tailings cemented paste backfill using cellulose nanofibers

IF 6.9 2区 环境科学与生态学 Q1 ENGINEERING, CHEMICAL Process Safety and Environmental Protection Pub Date : 2025-02-11 DOI:10.1016/j.psep.2025.106901
Yafei Hu , Bo Zhang , Sitao Zhu , Bin Han , Lujing Zheng , Deping Chen , Zhiyi Liu
{"title":"Preparation of high-performance and environmentally friendly superfine tailings cemented paste backfill using cellulose nanofibers","authors":"Yafei Hu ,&nbsp;Bo Zhang ,&nbsp;Sitao Zhu ,&nbsp;Bin Han ,&nbsp;Lujing Zheng ,&nbsp;Deping Chen ,&nbsp;Zhiyi Liu","doi":"10.1016/j.psep.2025.106901","DOIUrl":null,"url":null,"abstract":"<div><div>Backfilling using solid waste technology is a prominent direction for low-carbon mining and clean production in mines. To achieve high-quality cemented backfilling using superfine tailings, renewable cellulose nanofibers (CNF) are introduced to modify superfine tailings cemented paste backfill (SCPB), and a range of experiments are implemented to comprehensively investigate the effect of CNF on key properties of SCPB, such as mechanical properties, rheological properties, microstructure, and thermal stability. The results show that a proper amount of CNF content (0.1 %) can improve mechanical properties for SCPB, and there is little difference in the enhancement effect at all curing times. Simultaneously, the huge specific surface area of cellulose nanofibers (CNF) and numerous hydroxyl functional groups contribute to increased yield stress, apparent viscosity, and thixotropic in SCPB. The microanalysis results demonstrate that CNF introduces additional nucleation sites in the SCPB hydration reaction system, promoting the generation of the Si-O-Al bond and higher-polymerized C-S-H, thus accelerating the hydration reaction. On the other hand, the filling and bridging effects of CNF can improve the compactness of SCPB and prevent microfracture expansion, which are the key factors for CNF to enhance the mechanical properties of SCPB. The kinetic study of thermal analysis shows that CNF could increase the activation energy of hydration products in SCPB, thus improving its thermal stability. The research provides new ideas for green backfilling of solid waste and efficient utilization of superfine tailings.</div></div>","PeriodicalId":20743,"journal":{"name":"Process Safety and Environmental Protection","volume":"196 ","pages":"Article 106901"},"PeriodicalIF":6.9000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Safety and Environmental Protection","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957582025001685","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Backfilling using solid waste technology is a prominent direction for low-carbon mining and clean production in mines. To achieve high-quality cemented backfilling using superfine tailings, renewable cellulose nanofibers (CNF) are introduced to modify superfine tailings cemented paste backfill (SCPB), and a range of experiments are implemented to comprehensively investigate the effect of CNF on key properties of SCPB, such as mechanical properties, rheological properties, microstructure, and thermal stability. The results show that a proper amount of CNF content (0.1 %) can improve mechanical properties for SCPB, and there is little difference in the enhancement effect at all curing times. Simultaneously, the huge specific surface area of cellulose nanofibers (CNF) and numerous hydroxyl functional groups contribute to increased yield stress, apparent viscosity, and thixotropic in SCPB. The microanalysis results demonstrate that CNF introduces additional nucleation sites in the SCPB hydration reaction system, promoting the generation of the Si-O-Al bond and higher-polymerized C-S-H, thus accelerating the hydration reaction. On the other hand, the filling and bridging effects of CNF can improve the compactness of SCPB and prevent microfracture expansion, which are the key factors for CNF to enhance the mechanical properties of SCPB. The kinetic study of thermal analysis shows that CNF could increase the activation energy of hydration products in SCPB, thus improving its thermal stability. The research provides new ideas for green backfilling of solid waste and efficient utilization of superfine tailings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Process Safety and Environmental Protection
Process Safety and Environmental Protection 环境科学-工程:化工
CiteScore
11.40
自引率
15.40%
发文量
929
审稿时长
8.0 months
期刊介绍: The Process Safety and Environmental Protection (PSEP) journal is a leading international publication that focuses on the publication of high-quality, original research papers in the field of engineering, specifically those related to the safety of industrial processes and environmental protection. The journal encourages submissions that present new developments in safety and environmental aspects, particularly those that show how research findings can be applied in process engineering design and practice. PSEP is particularly interested in research that brings fresh perspectives to established engineering principles, identifies unsolved problems, or suggests directions for future research. The journal also values contributions that push the boundaries of traditional engineering and welcomes multidisciplinary papers. PSEP's articles are abstracted and indexed by a range of databases and services, which helps to ensure that the journal's research is accessible and recognized in the academic and professional communities. These databases include ANTE, Chemical Abstracts, Chemical Hazards in Industry, Current Contents, Elsevier Engineering Information database, Pascal Francis, Web of Science, Scopus, Engineering Information Database EnCompass LIT (Elsevier), and INSPEC. This wide coverage facilitates the dissemination of the journal's content to a global audience interested in process safety and environmental engineering.
期刊最新文献
Preparation of a fluorine-free foam for the prevention and control of spontaneous combustion of coal and its flame-retardant properties On the effects of flow/mixture stratification on combustion/stability behaviors of dual-swirl oxy-methane flames: Experimental and numerical study Inside Front Cover Contents Innovative circular bioeconomy and decarbonization approaches in palm oil waste management: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1