{"title":"Investigating the interactive effects of different functional parameters of a heating, cooling and power cycle based on DOE method","authors":"Reza Hajipour , Elaheh Neshat , Ali Shokri Kalan","doi":"10.1016/j.csite.2025.105853","DOIUrl":null,"url":null,"abstract":"<div><div>Cogeneration systems reduce fuel consumption and environmental pollutants. Optimizing these systems and operating existing equipment under optimal conditions further enhances fuel savings and pollution reduction. This study aims to investigate the interaction effects of functional parameters to identify the optimal operating conditions for all components. A new cogeneration system based on the methane-burning Brayton cycle, Kalina cycle, lithium-bromide cooling cycle, and a heating unit is designed. System performance is evaluated in terms of energy, exergy, and exergoeconomics. A parametric study identifies the optimal range of functional conditions with linear output changes, and the DOE method with fractional factorial design examines component interactions and their effects on system outputs. The most significant factors are the equivalence ratio and isentropic efficiency of compressors and the gas turbine, with their upper limits maximizing first and second-law efficiencies and the utilization factor. Analyzed using FORTRAN and Minitab, the system delivers 0.8 MW power, 0.4 MW cooling, and 1.2 MW heating, with energy and power costs of $16.53 and $51.19 per MWh. Multi-objective optimization improves exergy efficiency, reduces the total cost rate by 8.16 % to $110.76/hr, and lowers LCOP and cooling costs by 11.73 % and 4.15 %, respectively.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"68 ","pages":"Article 105853"},"PeriodicalIF":6.4000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X25001133","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Cogeneration systems reduce fuel consumption and environmental pollutants. Optimizing these systems and operating existing equipment under optimal conditions further enhances fuel savings and pollution reduction. This study aims to investigate the interaction effects of functional parameters to identify the optimal operating conditions for all components. A new cogeneration system based on the methane-burning Brayton cycle, Kalina cycle, lithium-bromide cooling cycle, and a heating unit is designed. System performance is evaluated in terms of energy, exergy, and exergoeconomics. A parametric study identifies the optimal range of functional conditions with linear output changes, and the DOE method with fractional factorial design examines component interactions and their effects on system outputs. The most significant factors are the equivalence ratio and isentropic efficiency of compressors and the gas turbine, with their upper limits maximizing first and second-law efficiencies and the utilization factor. Analyzed using FORTRAN and Minitab, the system delivers 0.8 MW power, 0.4 MW cooling, and 1.2 MW heating, with energy and power costs of $16.53 and $51.19 per MWh. Multi-objective optimization improves exergy efficiency, reduces the total cost rate by 8.16 % to $110.76/hr, and lowers LCOP and cooling costs by 11.73 % and 4.15 %, respectively.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.