“Brain state network dynamics in pediatric epilepsy: Chaotic attractor transition ensemble network”

IF 7 2区 医学 Q1 BIOLOGY Computers in biology and medicine Pub Date : 2025-02-13 DOI:10.1016/j.compbiomed.2025.109832
Parikshat Sirpal , William A. Sikora , Hazem H. Refai
{"title":"“Brain state network dynamics in pediatric epilepsy: Chaotic attractor transition ensemble network”","authors":"Parikshat Sirpal ,&nbsp;William A. Sikora ,&nbsp;Hazem H. Refai","doi":"10.1016/j.compbiomed.2025.109832","DOIUrl":null,"url":null,"abstract":"<div><div>Traditional scalp EEG signal analysis in pediatric epilepsy is limited by poor spatial resolution, susceptibility to noise and artifacts, and difficulty in accurately localizing epileptic activity, especially from deep or interconnected brain regions. Additionally, such methods often overlook the dynamic nature of brain states and seizure propagation, while reliance on visual inspection introduces variability in interpretation. These limitations hinder precise seizure detection and the mechanistic understanding of brain network dynamics. Here, we offer an alternative approach that addresses these challenges, and eventually enables effective clinical interventions to improve patient outcomes. By incorporating chaos and dynamical systems theory, we present and validate a novel ensemble framework, Chaotic Attractor Transition Ensemble Network for Epilepsy (CATE-NET), which identifies neuro-dynamical signatures underlying pediatric epilepsy, facilitating the discrimination between physiological brain activity and seizure-induced signal irregularities. CATE-NET is modularly designed to leverage nonlinear dynamics of EEG signals and chaotic attractors, particularly the Rössler chaotic attractor to model scalp EEG data. This is followed by a long short-term memory network module for the automatic analysis of brain states. The final module utilizes probabilistic graphing to map the output of the LSTM to state transition graphs, between pre-ictal, inter-ictal, ictal, and ictal-free brain states. Model metrics include a classification accuracy of 0.98, sensitivity of 0.76, specificity of 0.84, and an AUC value of 0.91 when distinguishing among ictal, inter-ictal, and ictal-free brain states. Additionally, the system integrates flexible horizon windows of 10, 20, and 30 min to determine brain state transitions. We demonstrate that nonlinear dynamics present in epileptic brain states derived from the Rössler chaotic attractor are effective features to compute brain state analysis and visualize pediatric epileptic brain state topology. CATE-NET introduces a novel platform for brain state analysis, feature extraction, and topological mapping in pediatric epilepsy by combining chaotic attractors, deep learning, and probabilistic graphing. By integrating explainable AI (XAI), the framework clarifies how chaotic attractor patterns and probabilistic transitions contribute to brain state classifications, seizure state dynamic transitions. This approach reveals the spatial organization and EEG signal dynamics of pediatric epileptic brain states, allowing integration with clinical EEG equipment to potentially improve seizure management and real time decision making.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"188 ","pages":"Article 109832"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525001829","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional scalp EEG signal analysis in pediatric epilepsy is limited by poor spatial resolution, susceptibility to noise and artifacts, and difficulty in accurately localizing epileptic activity, especially from deep or interconnected brain regions. Additionally, such methods often overlook the dynamic nature of brain states and seizure propagation, while reliance on visual inspection introduces variability in interpretation. These limitations hinder precise seizure detection and the mechanistic understanding of brain network dynamics. Here, we offer an alternative approach that addresses these challenges, and eventually enables effective clinical interventions to improve patient outcomes. By incorporating chaos and dynamical systems theory, we present and validate a novel ensemble framework, Chaotic Attractor Transition Ensemble Network for Epilepsy (CATE-NET), which identifies neuro-dynamical signatures underlying pediatric epilepsy, facilitating the discrimination between physiological brain activity and seizure-induced signal irregularities. CATE-NET is modularly designed to leverage nonlinear dynamics of EEG signals and chaotic attractors, particularly the Rössler chaotic attractor to model scalp EEG data. This is followed by a long short-term memory network module for the automatic analysis of brain states. The final module utilizes probabilistic graphing to map the output of the LSTM to state transition graphs, between pre-ictal, inter-ictal, ictal, and ictal-free brain states. Model metrics include a classification accuracy of 0.98, sensitivity of 0.76, specificity of 0.84, and an AUC value of 0.91 when distinguishing among ictal, inter-ictal, and ictal-free brain states. Additionally, the system integrates flexible horizon windows of 10, 20, and 30 min to determine brain state transitions. We demonstrate that nonlinear dynamics present in epileptic brain states derived from the Rössler chaotic attractor are effective features to compute brain state analysis and visualize pediatric epileptic brain state topology. CATE-NET introduces a novel platform for brain state analysis, feature extraction, and topological mapping in pediatric epilepsy by combining chaotic attractors, deep learning, and probabilistic graphing. By integrating explainable AI (XAI), the framework clarifies how chaotic attractor patterns and probabilistic transitions contribute to brain state classifications, seizure state dynamic transitions. This approach reveals the spatial organization and EEG signal dynamics of pediatric epileptic brain states, allowing integration with clinical EEG equipment to potentially improve seizure management and real time decision making.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
期刊最新文献
Editorial Board Detection of brain tumors using a transfer learning-based optimized ResNet152 model in MR images PhageDPO: A machine-learning based computational framework for identifying phage depolymerases Active learning and margin strategies for arrhythmia classification in implantable devices “Brain state network dynamics in pediatric epilepsy: Chaotic attractor transition ensemble network”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1