Seismic input method for a gravity dam–reservoir water–foundation system considering the compressibility of water

IF 4.6 2区 工程技术 Q1 ENGINEERING, GEOLOGICAL Soil Dynamics and Earthquake Engineering Pub Date : 2025-02-13 DOI:10.1016/j.soildyn.2025.109299
Fei Wang , Yuxian Tan , Zhiqiang Song , Yunhe Liu , Chuang Li , Ankui Hu
{"title":"Seismic input method for a gravity dam–reservoir water–foundation system considering the compressibility of water","authors":"Fei Wang ,&nbsp;Yuxian Tan ,&nbsp;Zhiqiang Song ,&nbsp;Yunhe Liu ,&nbsp;Chuang Li ,&nbsp;Ankui Hu","doi":"10.1016/j.soildyn.2025.109299","DOIUrl":null,"url":null,"abstract":"<div><div>The compressibility of reservoir water and the propagation of seismic waves in reservoir water are often disregarded in the seismic input of gravity dams. This paper proposed a method for solving the mixed wavefield of a reservoir water–dam foundation site on the basis of the wave equations for elastic solids and compressible water media. The radiation damping effects of the infinite foundation and reservoir water were simulated via viscoelastic artificial boundaries and fluid medium artificial boundaries, respectively. The dynamic interactions between reservoir water and dams and between reservoir water and foundations were simulated via the acoustic‒solid coupling method. A seismic wave input method for a gravity dam‒reservoir water‒foundation system based on both solid and fluid medium artificial boundary substructures was proposed. The seismic response of a concrete gravity dam was analyzed via the proposed seismic wave input method and the conventional seismic wave input method, which does not consider the propagation of seismic waves in reservoir water. Compared with those of the method proposed in this paper, the displacement and stress calculated via the seismic wave input method that does not consider the propagation of seismic waves in reservoir water are greater, with a maximum increase of 13.6 % in displacement and 55.9 % in stress. The minimum safety factor for antisliding stability of the dam foundation surface is relatively small, with a decrease of 13.8 %. The seismic wave input method that does not consider the propagation of seismic waves in reservoir water overestimates the displacement and stress response of the gravity dam and underestimates the safety factor of the antisliding stability of the dam foundation surface. Therefore, adopting a seismic wave input method that considers the propagation of seismic waves in reservoir water is necessary for the analysis of the seismic interaction of the gravity dam–reservoir water–foundation system.</div></div>","PeriodicalId":49502,"journal":{"name":"Soil Dynamics and Earthquake Engineering","volume":"192 ","pages":"Article 109299"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Dynamics and Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0267726125000922","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The compressibility of reservoir water and the propagation of seismic waves in reservoir water are often disregarded in the seismic input of gravity dams. This paper proposed a method for solving the mixed wavefield of a reservoir water–dam foundation site on the basis of the wave equations for elastic solids and compressible water media. The radiation damping effects of the infinite foundation and reservoir water were simulated via viscoelastic artificial boundaries and fluid medium artificial boundaries, respectively. The dynamic interactions between reservoir water and dams and between reservoir water and foundations were simulated via the acoustic‒solid coupling method. A seismic wave input method for a gravity dam‒reservoir water‒foundation system based on both solid and fluid medium artificial boundary substructures was proposed. The seismic response of a concrete gravity dam was analyzed via the proposed seismic wave input method and the conventional seismic wave input method, which does not consider the propagation of seismic waves in reservoir water. Compared with those of the method proposed in this paper, the displacement and stress calculated via the seismic wave input method that does not consider the propagation of seismic waves in reservoir water are greater, with a maximum increase of 13.6 % in displacement and 55.9 % in stress. The minimum safety factor for antisliding stability of the dam foundation surface is relatively small, with a decrease of 13.8 %. The seismic wave input method that does not consider the propagation of seismic waves in reservoir water overestimates the displacement and stress response of the gravity dam and underestimates the safety factor of the antisliding stability of the dam foundation surface. Therefore, adopting a seismic wave input method that considers the propagation of seismic waves in reservoir water is necessary for the analysis of the seismic interaction of the gravity dam–reservoir water–foundation system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑水可压缩性的重力坝-水库-地基系统地震输入方法
在重力坝的地震输入中,往往忽略了水库水的可压缩性和地震波在水库水中的传播。本文在弹性固体和可压缩水介质波动方程的基础上,提出了求解水库坝基混合波场的方法。采用粘弹性人工边界和流体介质人工边界分别模拟无限地基和水库水的辐射阻尼效应。采用声固耦合方法模拟了水库水与大坝、水库水与地基的动力相互作用。提出了一种基于固体介质和流体介质人工边界子结构的重力坝-水库水基系统地震波输入方法。采用提出的地震波输入法和不考虑地震波在水库水中传播的常规地震波输入法,对某混凝土重力坝的地震响应进行了分析。与本文提出的方法相比,不考虑地震波在水库水中传播的地震波输入法计算的位移和应力更大,位移和应力的最大增幅分别为13.6%和55.9%。坝基面抗滑稳定最小安全系数较小,减小了13.8%。不考虑地震波在水库水中传播的地震波输入方法高估了重力坝的位移和应力响应,低估了坝基表面抗滑稳定的安全系数。因此,采用考虑地震波在水库水中传播的地震波输入方法来分析重力坝-水库-水基系统的地震相互作用是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Soil Dynamics and Earthquake Engineering
Soil Dynamics and Earthquake Engineering 工程技术-地球科学综合
CiteScore
7.50
自引率
15.00%
发文量
446
审稿时长
8 months
期刊介绍: The journal aims to encourage and enhance the role of mechanics and other disciplines as they relate to earthquake engineering by providing opportunities for the publication of the work of applied mathematicians, engineers and other applied scientists involved in solving problems closely related to the field of earthquake engineering and geotechnical earthquake engineering. Emphasis is placed on new concepts and techniques, but case histories will also be published if they enhance the presentation and understanding of new technical concepts.
期刊最新文献
3D FE cyclic modelling of monopiles in sand using SANISAND-MS: Calibration and validation from soil element to pile-interaction scale Influence of the type and method of bentonite addition on the liquefaction resistance of a standard clean sand Study on critical mechanical parameters for fault slip instability Behaviour of tuned hysteretic inerter viscous damper assisted structure subjected to soil dependent stochastic seismic excitation and recorded ground motions Investigation on seismic isolation performance of surface structures based on concrete-rubber layered periodic foundations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1