Ahmed G. Abdelaziz , Hassan Nageh , Mohga S. Abdalla , Sara M. Abdo , Asmaa A. Amer , Samah A. Loutfy , Ali Alsalme , David Cornu , Mikhael Bechelany , Ahmed Barhoum
{"title":"Enhanced wound healing with flaxseed extract-loaded polyvinyl alcohol nanofibrous scaffolds: Phytochemical composition, antioxidant activity, and antimicrobial properties","authors":"Ahmed G. Abdelaziz , Hassan Nageh , Mohga S. Abdalla , Sara M. Abdo , Asmaa A. Amer , Samah A. Loutfy , Ali Alsalme , David Cornu , Mikhael Bechelany , Ahmed Barhoum","doi":"10.1016/j.jsamd.2025.100862","DOIUrl":null,"url":null,"abstract":"<div><div>This study aimed to develop and optimize composite nanofibrous scaffolds for enhanced wound healing and antimicrobial applications. Polyvinyl alcohol (PVA) nanofibers loaded with ethanolic flaxseed extract were fabricated via solution electrospinning. The methodology focused on optimizing key parameters, including polymer-to-extract ratio, swelling ratio, hydrolytic degradation, and nanofiber mean diameter, to achieve superior scaffold properties. The optimized scaffold, with a PVA-to-flaxseed extract weight ratio of 70:30 (PV70:FS30), exhibited bead-free morphology and a mean fiber diameter of 319 nm (compared to 175 nm for pure PVA fibers). PV70:FS30 scaffolds demonstrated significant antimicrobial activity, effectively inhibiting both Gram-negative and Gram-positive bacterial growth. Moreover, human melanocyte (HBF-4) viability and wound healing rates were substantially higher on PV70:FS30 scaffolds than on pure PVA fibers (viability: 122.3% vs. 91.2%; wound closure at 48 h: 97.3% vs. 69.6%, relative to control). However, cell adhesion was lower on PV70:FS30 scaffolds (93 cells/section vs. 183 cells/section for PVA nanofibers) due to increased cross-linking and reduced hydrophilicity from flaxseed extract incorporation. These findings indicate a clear interplay between flaxseed extract concentration and scaffold morphology, highlighting their potential for advancing skin tissue engineering applications. These results provide insights into designing nanofibrous scaffolds for improved wound healing and antimicrobial properties.</div></div>","PeriodicalId":17219,"journal":{"name":"Journal of Science: Advanced Materials and Devices","volume":"10 2","pages":"Article 100862"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science: Advanced Materials and Devices","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468217925000152","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to develop and optimize composite nanofibrous scaffolds for enhanced wound healing and antimicrobial applications. Polyvinyl alcohol (PVA) nanofibers loaded with ethanolic flaxseed extract were fabricated via solution electrospinning. The methodology focused on optimizing key parameters, including polymer-to-extract ratio, swelling ratio, hydrolytic degradation, and nanofiber mean diameter, to achieve superior scaffold properties. The optimized scaffold, with a PVA-to-flaxseed extract weight ratio of 70:30 (PV70:FS30), exhibited bead-free morphology and a mean fiber diameter of 319 nm (compared to 175 nm for pure PVA fibers). PV70:FS30 scaffolds demonstrated significant antimicrobial activity, effectively inhibiting both Gram-negative and Gram-positive bacterial growth. Moreover, human melanocyte (HBF-4) viability and wound healing rates were substantially higher on PV70:FS30 scaffolds than on pure PVA fibers (viability: 122.3% vs. 91.2%; wound closure at 48 h: 97.3% vs. 69.6%, relative to control). However, cell adhesion was lower on PV70:FS30 scaffolds (93 cells/section vs. 183 cells/section for PVA nanofibers) due to increased cross-linking and reduced hydrophilicity from flaxseed extract incorporation. These findings indicate a clear interplay between flaxseed extract concentration and scaffold morphology, highlighting their potential for advancing skin tissue engineering applications. These results provide insights into designing nanofibrous scaffolds for improved wound healing and antimicrobial properties.
期刊介绍:
In 1985, the Journal of Science was founded as a platform for publishing national and international research papers across various disciplines, including natural sciences, technology, social sciences, and humanities. Over the years, the journal has experienced remarkable growth in terms of quality, size, and scope. Today, it encompasses a diverse range of publications dedicated to academic research.
Considering the rapid expansion of materials science, we are pleased to introduce the Journal of Science: Advanced Materials and Devices. This new addition to our journal series offers researchers an exciting opportunity to publish their work on all aspects of materials science and technology within the esteemed Journal of Science.
With this development, we aim to revolutionize the way research in materials science is expressed and organized, further strengthening our commitment to promoting outstanding research across various scientific and technological fields.