A review of biological processing technologies for palm oil mill waste treatment and simultaneous bioenergy production at laboratory scale, pilot scale and industrial scale applications with technoeconomic analysis
{"title":"A review of biological processing technologies for palm oil mill waste treatment and simultaneous bioenergy production at laboratory scale, pilot scale and industrial scale applications with technoeconomic analysis","authors":"Debbie Dominic, Siti Baidurah","doi":"10.1016/j.ecmx.2025.100914","DOIUrl":null,"url":null,"abstract":"<div><div>Palm oil production is one of the significant economic contributors to Malaysia, yet it poses serious environmental challenges, particularly in the management of palm oil mill waste. As the industry expands, the improper management of palm oil waste has raised alarms regarding environmental concerns. This review aims to address sustainable bioenergy production through biological processing technologies for palm oil mill waste treatment, focusing on biofuels such as biogas, bioethanol, and solid biomass pellets. Furthermore, the optimization of these technologies and their efficiency in removing pollutants like chemical oxygen demand (COD), biochemical oxygen demand (BOD), and total suspended solids (TSS) at laboratory, pilot, and industrial scales are also explored. Additionally, the technoeconomic analysis (TEA) of the treatment technologies using SuperPro Designer and Aspen Plus is discussed to provide insights into their economic viability and environmental benefits. This review presents a comprehensive approach to palm oil mill waste treatment integrated with bioenergy production and offers scalable and economically viable solutions for sustainable palm oil production. In the future, the development of hybrid biological treatment systems combining advanced technologies such as artificial intelligence (AI), internet of things (IoT), and nanotechnology could be proposed to further enhance operational efficiency, reduce costs, and maximize the recovery of bioenergy. Importantly, the adoption of sustainability certifications like Roundtable on Sustainable Palm Oil (RSPO) and Malaysian Sustainable Palm Oil (MSPO) is crucial in promoting responsible practices in palm oil production while ensuring compliance with environmental regulations, which would improve marketability.</div></div>","PeriodicalId":37131,"journal":{"name":"Energy Conversion and Management-X","volume":"26 ","pages":"Article 100914"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management-X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590174525000467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Palm oil production is one of the significant economic contributors to Malaysia, yet it poses serious environmental challenges, particularly in the management of palm oil mill waste. As the industry expands, the improper management of palm oil waste has raised alarms regarding environmental concerns. This review aims to address sustainable bioenergy production through biological processing technologies for palm oil mill waste treatment, focusing on biofuels such as biogas, bioethanol, and solid biomass pellets. Furthermore, the optimization of these technologies and their efficiency in removing pollutants like chemical oxygen demand (COD), biochemical oxygen demand (BOD), and total suspended solids (TSS) at laboratory, pilot, and industrial scales are also explored. Additionally, the technoeconomic analysis (TEA) of the treatment technologies using SuperPro Designer and Aspen Plus is discussed to provide insights into their economic viability and environmental benefits. This review presents a comprehensive approach to palm oil mill waste treatment integrated with bioenergy production and offers scalable and economically viable solutions for sustainable palm oil production. In the future, the development of hybrid biological treatment systems combining advanced technologies such as artificial intelligence (AI), internet of things (IoT), and nanotechnology could be proposed to further enhance operational efficiency, reduce costs, and maximize the recovery of bioenergy. Importantly, the adoption of sustainability certifications like Roundtable on Sustainable Palm Oil (RSPO) and Malaysian Sustainable Palm Oil (MSPO) is crucial in promoting responsible practices in palm oil production while ensuring compliance with environmental regulations, which would improve marketability.
期刊介绍:
Energy Conversion and Management: X is the open access extension of the reputable journal Energy Conversion and Management, serving as a platform for interdisciplinary research on a wide array of critical energy subjects. The journal is dedicated to publishing original contributions and in-depth technical review articles that present groundbreaking research on topics spanning energy generation, utilization, conversion, storage, transmission, conservation, management, and sustainability.
The scope of Energy Conversion and Management: X encompasses various forms of energy, including mechanical, thermal, nuclear, chemical, electromagnetic, magnetic, and electric energy. It addresses all known energy resources, highlighting both conventional sources like fossil fuels and nuclear power, as well as renewable resources such as solar, biomass, hydro, wind, geothermal, and ocean energy.