Cunrun Ye, Zhaoyang Ning, Tingting Hu, Xiaoyu Zhao, Weijie Mu
{"title":"Melatonin modulates autophagy, mitochondria and antioxidant in the liver and brain of Perccottus glenni during recovery from freezing","authors":"Cunrun Ye, Zhaoyang Ning, Tingting Hu, Xiaoyu Zhao, Weijie Mu","doi":"10.1016/j.cbpa.2025.111824","DOIUrl":null,"url":null,"abstract":"<div><div>The Amur sleeper (<em>Percottus glenii</em>), a freeze tolerant fish species, can survive being frozen in ice, survival after recovery from freezing. This study investigated the role of melatonin in the recovery of <em>Perccottus glenni</em> following freezing. The fish were categorized into the following groups: non-treated control (Con), pinealectomy (Px), melatonin injection (Mlt), sham control (Sham), and saline injection control (Sal). The results revealed that the melatonin levels were affected by pinealectomy and melatonin injection. The liver and brain of the Px and Mlt groups exhibited autophagy after 4 h, along with the differential expression of endoplasmic reticulum stress-related genes. Furthermore, the activities of the mitochondrial complex initially increased at 4 h and then decreased by 12 h in the Px and Mlt groups, while antioxidant enzyme activities varied across groups and time points. These findings indicated that melatonin plays a key role in the recovery of <em>P. glenni</em> in a time-dependent manner, affecting autophagy, mitochondrial function, and antioxidant capacity. This study is the first to demonstrate melatonin's time-dependent role in facilitating the recovery of <em>P. glenni</em> after freezing, highlighting its critical involvement in modulating autophagy, mitochondrial function, and antioxidant processes. These findings shed light on the physiological mechanisms underlying freeze tolerance and recovery in fish, offering valuable insights for understanding and potentially enhancing the recovery processes in other species.</div></div>","PeriodicalId":55237,"journal":{"name":"Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology","volume":"303 ","pages":"Article 111824"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1095643325000224","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Amur sleeper (Percottus glenii), a freeze tolerant fish species, can survive being frozen in ice, survival after recovery from freezing. This study investigated the role of melatonin in the recovery of Perccottus glenni following freezing. The fish were categorized into the following groups: non-treated control (Con), pinealectomy (Px), melatonin injection (Mlt), sham control (Sham), and saline injection control (Sal). The results revealed that the melatonin levels were affected by pinealectomy and melatonin injection. The liver and brain of the Px and Mlt groups exhibited autophagy after 4 h, along with the differential expression of endoplasmic reticulum stress-related genes. Furthermore, the activities of the mitochondrial complex initially increased at 4 h and then decreased by 12 h in the Px and Mlt groups, while antioxidant enzyme activities varied across groups and time points. These findings indicated that melatonin plays a key role in the recovery of P. glenni in a time-dependent manner, affecting autophagy, mitochondrial function, and antioxidant capacity. This study is the first to demonstrate melatonin's time-dependent role in facilitating the recovery of P. glenni after freezing, highlighting its critical involvement in modulating autophagy, mitochondrial function, and antioxidant processes. These findings shed light on the physiological mechanisms underlying freeze tolerance and recovery in fish, offering valuable insights for understanding and potentially enhancing the recovery processes in other species.
期刊介绍:
Part A: Molecular & Integrative Physiology of Comparative Biochemistry and Physiology. This journal covers molecular, cellular, integrative, and ecological physiology. Topics include bioenergetics, circulation, development, excretion, ion regulation, endocrinology, neurobiology, nutrition, respiration, and thermal biology. Study on regulatory mechanisms at any level of organization such as signal transduction and cellular interaction and control of behavior are also published.