Nitric oxide enhances copper tolerance by regulating cell wall composition and copper transporting-related transcripts in cotton roots

IF 6.1 2区 生物学 Q1 PLANT SCIENCES Plant Physiology and Biochemistry Pub Date : 2025-02-10 DOI:10.1016/j.plaphy.2025.109621
Jianfei Wu, Xiaoxia Luo, Yin Huang, Feiyu Tang
{"title":"Nitric oxide enhances copper tolerance by regulating cell wall composition and copper transporting-related transcripts in cotton roots","authors":"Jianfei Wu,&nbsp;Xiaoxia Luo,&nbsp;Yin Huang,&nbsp;Feiyu Tang","doi":"10.1016/j.plaphy.2025.109621","DOIUrl":null,"url":null,"abstract":"<div><div>Little is known about nitric oxide (NO)-mediated cotton plants' response to copper (Cu) stress and the underlying tolerance mechanism. It was hypothesized that NO can alleviate Cu toxicity to cotton roots by regulating the root cell wall composition and the transcription of Cu ion transporting-related genes. Cu stress significantly increased NO synthase (EC 1.14.14.47) activity, leading to elevated endogenous NO content. Cu excess-induced growth inhibition was reversed by sodium nitroprusside (SNP, NO donor) application but exacerbated by cPTIO (NO scavenger) addition. The SNP + Cu treatment promoted more Cu ions accumulation in roots and less Cu ions transportation to leaves than Cu treatment, which also produced the largest Cu uptake amount per plant among all treatments. The concentration of cell wall pectin was significantly enhanced by 16.95% by the SNP application. Pectin methylesterase activity was up-regulated by 30.86% (<em>p</em> &lt; 0.05), thus resulting in a reduction of 10.39% in pectin methylesterification degree in the Cu + SNP treatment than in Cu stress alone; additionally, Cu chaperons COX17, CCH, and ATX1, Cu chelator MT2, and Cu homeostasis regulator SPL7 exhibited higher transcriptional levels. Collectively, NO improved cotton roots' tolerance to Cu stress through the enhancement of Cu ions binding to cell wall due to increased polysaccharide biosynthesis and pectin demethylesterification degree, and via the promotion of Cu ions sequestration owing to up-regulated expressions of Cu chaperones and chelators. These findings should have significant implications for the phytoremediation of Cu-contaminated soils by using cotton plants, which needs further validation under field conditions.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"221 ","pages":"Article 109621"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942825001494","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Little is known about nitric oxide (NO)-mediated cotton plants' response to copper (Cu) stress and the underlying tolerance mechanism. It was hypothesized that NO can alleviate Cu toxicity to cotton roots by regulating the root cell wall composition and the transcription of Cu ion transporting-related genes. Cu stress significantly increased NO synthase (EC 1.14.14.47) activity, leading to elevated endogenous NO content. Cu excess-induced growth inhibition was reversed by sodium nitroprusside (SNP, NO donor) application but exacerbated by cPTIO (NO scavenger) addition. The SNP + Cu treatment promoted more Cu ions accumulation in roots and less Cu ions transportation to leaves than Cu treatment, which also produced the largest Cu uptake amount per plant among all treatments. The concentration of cell wall pectin was significantly enhanced by 16.95% by the SNP application. Pectin methylesterase activity was up-regulated by 30.86% (p < 0.05), thus resulting in a reduction of 10.39% in pectin methylesterification degree in the Cu + SNP treatment than in Cu stress alone; additionally, Cu chaperons COX17, CCH, and ATX1, Cu chelator MT2, and Cu homeostasis regulator SPL7 exhibited higher transcriptional levels. Collectively, NO improved cotton roots' tolerance to Cu stress through the enhancement of Cu ions binding to cell wall due to increased polysaccharide biosynthesis and pectin demethylesterification degree, and via the promotion of Cu ions sequestration owing to up-regulated expressions of Cu chaperones and chelators. These findings should have significant implications for the phytoremediation of Cu-contaminated soils by using cotton plants, which needs further validation under field conditions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Physiology and Biochemistry
Plant Physiology and Biochemistry 生物-植物科学
CiteScore
11.10
自引率
3.10%
发文量
410
审稿时长
33 days
期刊介绍: Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement. Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB. Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.
期刊最新文献
Spatially resolved localization of Cd and Mn and their interactions in the Cd/Mn hyperaccumulator Celosia argentea Linn Photoprotection strategies of 'Cabernet Sauvignon' with different rootstocks under combined high temperature and strong light stress Metabolomic combined with transcriptome analysis revealed the improvement of strawberry fruit quality after potassium sulfate treatment The Deg5 and Deg8 thylakoid lumenal proteases are dispensable for photosynthesis and fruit ripening in Solanum lycopersicum Gibberellins producing endophytic Aspergillus nidulans DSE-2 biosorbs Cd and down-regulates OsNRAMP5 and OsCd1 genes to improve rice growth in contaminated soil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1