Soundaryaa Bargunam, Riyan Roy, Devika Shetty , Amisha S. H , Shukla V S, Vidhu Sankar Babu
{"title":"Melatonin-governed growth and metabolome divergence: Circadian and stress responses in key plant species","authors":"Soundaryaa Bargunam, Riyan Roy, Devika Shetty , Amisha S. H , Shukla V S, Vidhu Sankar Babu","doi":"10.1016/j.plaphy.2025.109635","DOIUrl":null,"url":null,"abstract":"<div><div>Melatonin, a versatile biomolecule, profoundly influences plant growth and resilience through its intricate regulation of metabolic pathways, circadian rhythms, and cellular processes. The current study elucidates melatonin's concentration-dependent biphasic effects on growth dynamics in <em>Arabidopsis thaliana</em> and <em>Brassica nigra</em>. While 50 μM melatonin optimized biomass accumulation and root elongation, higher concentrations (100 μM) elicited stress responses, underscoring its dual role as a growth promoter and stress modulator. Melatonin extended photosynthetic efficiency by modulating chlorophyll and carotenoid synthesis diurnally, offering protection against photodamage. Divergent responses between the two species, driven by species-specific metabolic reprogramming, were evident in pigment biosynthesis and antioxidant pathways. <em>B. nigra</em> displayed robust activation of flavonoid and phenylpropanoid pathways, cytokinin signaling, and enhanced oxidative defenses, contrasting with <em>A. thaliana</em>, where melatonin suppressed pigment precursors and antioxidant activation. Metabolomic analysis revealed melatonin's orchestration of hormonal crosstalk, involving auxins, gibberellins, and jasmonates, to fine-tune growth and stress adaptation. Stomatal dynamics and cell wall fortification in <em>B. nigra</em> highlighted melatonin's role in optimizing water-use efficiency and structural resilience under abiotic stress. Cytogenetic studies confirmed melatonin's role in safeguarding genomic integrity, regulating chromatin remodeling, and promoting DNA repair mechanisms, with <em>B. nigra</em> demonstrating adaptive genomic strategies under stress. Moreover, melatonin influenced critical metabolic pathways, including polyamine biosynthesis, sulfur metabolism, and nucleotide regulation, emphasizing its multifaceted impact on cellular homeostasis. These findings position melatonin as a cornerstone molecule in plant biotechnology, with potential applications in enhancing crop resilience and productivity under fluctuating environmental conditions.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"221 ","pages":"Article 109635"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942825001639","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Melatonin, a versatile biomolecule, profoundly influences plant growth and resilience through its intricate regulation of metabolic pathways, circadian rhythms, and cellular processes. The current study elucidates melatonin's concentration-dependent biphasic effects on growth dynamics in Arabidopsis thaliana and Brassica nigra. While 50 μM melatonin optimized biomass accumulation and root elongation, higher concentrations (100 μM) elicited stress responses, underscoring its dual role as a growth promoter and stress modulator. Melatonin extended photosynthetic efficiency by modulating chlorophyll and carotenoid synthesis diurnally, offering protection against photodamage. Divergent responses between the two species, driven by species-specific metabolic reprogramming, were evident in pigment biosynthesis and antioxidant pathways. B. nigra displayed robust activation of flavonoid and phenylpropanoid pathways, cytokinin signaling, and enhanced oxidative defenses, contrasting with A. thaliana, where melatonin suppressed pigment precursors and antioxidant activation. Metabolomic analysis revealed melatonin's orchestration of hormonal crosstalk, involving auxins, gibberellins, and jasmonates, to fine-tune growth and stress adaptation. Stomatal dynamics and cell wall fortification in B. nigra highlighted melatonin's role in optimizing water-use efficiency and structural resilience under abiotic stress. Cytogenetic studies confirmed melatonin's role in safeguarding genomic integrity, regulating chromatin remodeling, and promoting DNA repair mechanisms, with B. nigra demonstrating adaptive genomic strategies under stress. Moreover, melatonin influenced critical metabolic pathways, including polyamine biosynthesis, sulfur metabolism, and nucleotide regulation, emphasizing its multifaceted impact on cellular homeostasis. These findings position melatonin as a cornerstone molecule in plant biotechnology, with potential applications in enhancing crop resilience and productivity under fluctuating environmental conditions.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.