Paul Cyréus MSc , Katarina Wadén MD , Sofie Hellberg MSc , Otto Bergman PhD , Mariette Lengquist MSc , Eva Karlöf MD, PhD , Andrew Buckler PhD , Ljubica Matic PhD , Joy Roy MD, PhD , David Marlevi PhD , Melody Chemaly PhD , Ulf Hedin MD, PhD
{"title":"Atherosclerotic plaque instability in symptomatic non-significant carotid stenoses","authors":"Paul Cyréus MSc , Katarina Wadén MD , Sofie Hellberg MSc , Otto Bergman PhD , Mariette Lengquist MSc , Eva Karlöf MD, PhD , Andrew Buckler PhD , Ljubica Matic PhD , Joy Roy MD, PhD , David Marlevi PhD , Melody Chemaly PhD , Ulf Hedin MD, PhD","doi":"10.1016/j.jvssci.2025.100280","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Carotid endarterectomy for symptomatic carotid stenosis is recommended for patients with >70% stenosis, but not in those with <50%. Because non-significant, low-degree stenoses may still cause strokes, refined risk stratification is necessary, which could be improved by assessing biological features of plaque instability. To challenge risk-stratification based on luminal narrowing, we compared biological features of carotid plaques from symptomatic patients with low-degree (<50%) vs high-degree (>70%) stenosis and explored potential mechanisms behind plaque instability in low-degree stenoses.</div></div><div><h3>Methods</h3><div>Endarterectomy specimens were taken from symptomatic patients with high-degree (n = 204) and low-degree (n = 34) stenosis, all part of the Biobank of Karolinska Endarterectomies. Patient demographics, image-derived plaque morphology, and gene expression analyses of extracted lesions were used for comparisons. Plaque biology was assessed by transcriptomics using dimensionality reduction, differential gene expression, and gene-set enrichment analyses. Immunohistochemistry was used to study proteins corresponding to upregulated genes.</div></div><div><h3>Results</h3><div>The demographics of the two groups were statistically similar. Calcification, lipid-rich necrotic core, intraplaque hemorrhage, plaque burden, and fibrous cap thickness were similar in both groups, whereas the sum of lipid-rich necrotic core and intraplaque hemorrhage was higher (<em>P</em> = .033) in the high-degree stenosis group. Dimensionality reduction analysis indicated poor clustering separation of plaque gene expression in low-compared with high-degree stenosis lesions, whereas differential gene expression showed upregulation of hypoxia-inducible factor 3A (log<sub>2</sub> fold change, 0.7212; <em>P</em> = .0003), and gene-set enrichment analyses identified pathways related to tissue hypoxia and angiogenesis in low-degree stenoses. Hypoxia-inducible factor 3-alpha protein was associated with smooth muscle cells in neo-vascularized plaque regions.</div></div><div><h3>Conclusions</h3><div>Plaques from symptomatic patients with non-significant low-degree carotid stenoses showed morphologic and biological features of atherosclerotic plaque instability that were comparable to plaques from patients with high-degree stenoses, emphasizing the need for improved stroke risk stratification for intervention in all patients with symptomatic carotid stenosis irrespective of luminal narrowing. An increased expression of hypoxia-inducible factor 3A in low-degree stenotic lesions suggested mechanisms of plaque instability associated with tissue hypoxia and plaque angiogenesis, but the exact role of hypoxia-inducible factor 3A in this process remains to be determined.</div></div><div><h3>Clinical relevance</h3><div>Carotid plaques from symptomatic patients with <50% stenosis show morphologic and biological features of plaque instability, comparable to high-degree stenosis, which emphasizes the need for improved stroke risk stratification beyond stenosis severity.</div></div>","PeriodicalId":74035,"journal":{"name":"JVS-vascular science","volume":"6 ","pages":"Article 100280"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JVS-vascular science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266635032500001X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
Carotid endarterectomy for symptomatic carotid stenosis is recommended for patients with >70% stenosis, but not in those with <50%. Because non-significant, low-degree stenoses may still cause strokes, refined risk stratification is necessary, which could be improved by assessing biological features of plaque instability. To challenge risk-stratification based on luminal narrowing, we compared biological features of carotid plaques from symptomatic patients with low-degree (<50%) vs high-degree (>70%) stenosis and explored potential mechanisms behind plaque instability in low-degree stenoses.
Methods
Endarterectomy specimens were taken from symptomatic patients with high-degree (n = 204) and low-degree (n = 34) stenosis, all part of the Biobank of Karolinska Endarterectomies. Patient demographics, image-derived plaque morphology, and gene expression analyses of extracted lesions were used for comparisons. Plaque biology was assessed by transcriptomics using dimensionality reduction, differential gene expression, and gene-set enrichment analyses. Immunohistochemistry was used to study proteins corresponding to upregulated genes.
Results
The demographics of the two groups were statistically similar. Calcification, lipid-rich necrotic core, intraplaque hemorrhage, plaque burden, and fibrous cap thickness were similar in both groups, whereas the sum of lipid-rich necrotic core and intraplaque hemorrhage was higher (P = .033) in the high-degree stenosis group. Dimensionality reduction analysis indicated poor clustering separation of plaque gene expression in low-compared with high-degree stenosis lesions, whereas differential gene expression showed upregulation of hypoxia-inducible factor 3A (log2 fold change, 0.7212; P = .0003), and gene-set enrichment analyses identified pathways related to tissue hypoxia and angiogenesis in low-degree stenoses. Hypoxia-inducible factor 3-alpha protein was associated with smooth muscle cells in neo-vascularized plaque regions.
Conclusions
Plaques from symptomatic patients with non-significant low-degree carotid stenoses showed morphologic and biological features of atherosclerotic plaque instability that were comparable to plaques from patients with high-degree stenoses, emphasizing the need for improved stroke risk stratification for intervention in all patients with symptomatic carotid stenosis irrespective of luminal narrowing. An increased expression of hypoxia-inducible factor 3A in low-degree stenotic lesions suggested mechanisms of plaque instability associated with tissue hypoxia and plaque angiogenesis, but the exact role of hypoxia-inducible factor 3A in this process remains to be determined.
Clinical relevance
Carotid plaques from symptomatic patients with <50% stenosis show morphologic and biological features of plaque instability, comparable to high-degree stenosis, which emphasizes the need for improved stroke risk stratification beyond stenosis severity.