Dual-stage method with PINN for coupled strong-form diffusion and energy-based deformation analysis in lithium-ion batteries

IF 4.4 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Applied Mathematical Modelling Pub Date : 2025-02-05 DOI:10.1016/j.apm.2025.115986
Yunhao Wu , Wei Feng , Yong Li , Kai Zhang , Fuqian Yang
{"title":"Dual-stage method with PINN for coupled strong-form diffusion and energy-based deformation analysis in lithium-ion batteries","authors":"Yunhao Wu ,&nbsp;Wei Feng ,&nbsp;Yong Li ,&nbsp;Kai Zhang ,&nbsp;Fuqian Yang","doi":"10.1016/j.apm.2025.115986","DOIUrl":null,"url":null,"abstract":"<div><div>Traditional numerical methods, such as finite element analysis, have been extensively used to solve lithiation-induced stress, while they are costly and computationally intensive in solving high-dimensional nonlinear problems. In this work, we combine an alternating iterative method with a deep energy method to study a nonlinear coupling problem associated with the deformation of electrode materials in lithium-ion battery, i.e., the coupling between stress and diffusion during electrochemical cycling. Physics-informed neural networks (PINNs) are established to solve the time-dependent diffusion equation, which captures the evolution of the concentration field under stress-limited diffusion. The concentration field at each specific time serves as a part of the loss function for the Deep Energy Method (DEM)-based model, which computes the corresponding stress field. An alternating iterative approach is used to solve the coupling between diffusion and stress, with the diffusion equation being solved by the trained PINN and the static stress computation by the DEM for the updated concentration field. This sequential and iterative process effectively addresses the interaction between the concentration field and the deformation field, ensuring accurate and efficient analysis of the coupled diffusion-deformation problem. Numerical experiments support the feasibility and robustness of the alternating-iterative method with de-coupled physics-informed neural networks to solve complex problems for various physical scenarios and demonstrate the superior performance of the proposed method. The proposed method offers a simple avenue to solve multi-physics coupling problems with significantly theoretical and practical potential. The code used in this work is available at <span><span>https://github.com/Owen-Hugh/DEMs.git</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50980,"journal":{"name":"Applied Mathematical Modelling","volume":"143 ","pages":"Article 115986"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Modelling","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0307904X25000617","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional numerical methods, such as finite element analysis, have been extensively used to solve lithiation-induced stress, while they are costly and computationally intensive in solving high-dimensional nonlinear problems. In this work, we combine an alternating iterative method with a deep energy method to study a nonlinear coupling problem associated with the deformation of electrode materials in lithium-ion battery, i.e., the coupling between stress and diffusion during electrochemical cycling. Physics-informed neural networks (PINNs) are established to solve the time-dependent diffusion equation, which captures the evolution of the concentration field under stress-limited diffusion. The concentration field at each specific time serves as a part of the loss function for the Deep Energy Method (DEM)-based model, which computes the corresponding stress field. An alternating iterative approach is used to solve the coupling between diffusion and stress, with the diffusion equation being solved by the trained PINN and the static stress computation by the DEM for the updated concentration field. This sequential and iterative process effectively addresses the interaction between the concentration field and the deformation field, ensuring accurate and efficient analysis of the coupled diffusion-deformation problem. Numerical experiments support the feasibility and robustness of the alternating-iterative method with de-coupled physics-informed neural networks to solve complex problems for various physical scenarios and demonstrate the superior performance of the proposed method. The proposed method offers a simple avenue to solve multi-physics coupling problems with significantly theoretical and practical potential. The code used in this work is available at https://github.com/Owen-Hugh/DEMs.git.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Mathematical Modelling
Applied Mathematical Modelling 数学-工程:综合
CiteScore
9.80
自引率
8.00%
发文量
508
审稿时长
43 days
期刊介绍: Applied Mathematical Modelling focuses on research related to the mathematical modelling of engineering and environmental processes, manufacturing, and industrial systems. A significant emerging area of research activity involves multiphysics processes, and contributions in this area are particularly encouraged. This influential publication covers a wide spectrum of subjects including heat transfer, fluid mechanics, CFD, and transport phenomena; solid mechanics and mechanics of metals; electromagnets and MHD; reliability modelling and system optimization; finite volume, finite element, and boundary element procedures; modelling of inventory, industrial, manufacturing and logistics systems for viable decision making; civil engineering systems and structures; mineral and energy resources; relevant software engineering issues associated with CAD and CAE; and materials and metallurgical engineering. Applied Mathematical Modelling is primarily interested in papers developing increased insights into real-world problems through novel mathematical modelling, novel applications or a combination of these. Papers employing existing numerical techniques must demonstrate sufficient novelty in the solution of practical problems. Papers on fuzzy logic in decision-making or purely financial mathematics are normally not considered. Research on fractional differential equations, bifurcation, and numerical methods needs to include practical examples. Population dynamics must solve realistic scenarios. Papers in the area of logistics and business modelling should demonstrate meaningful managerial insight. Submissions with no real-world application will not be considered.
期刊最新文献
Identification for generalized Hammerstein models with multiple switching linear dynamics Dynamic-spread assessment and kink detection in the early mpox outbreak Analytical springback modelling for thermal-mechanical bending of TA18 tube under non-isothermal loading Dynamic response of a floating flexible plate to a localised time-periodic and moving load Fluid-structure interaction approximation with embedded solid-shell finite elements using discontinuous shape functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1