{"title":"Data-Constrained Magnetohydrodynamics Simulation of a Confined X-Class Flare in NOAA Active Region 11166","authors":"Sanjay Kumar, Pawan Kumar, Sadashiv, Sushree S. Nayak, Satyam Agarwal, Avijeet Prasad, Ramit Bhattacharyya, Ramesh Chandra","doi":"10.1007/s11207-025-02426-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we present a magnetohydrodynamics simulation of NOAA active region 11166 to understand the origin of a confined X-class flare that peaked at 23:23 UT on 2011 March 9. The simulation is initiated with a magnetic field extrapolated from the corresponding photospheric magnetogram, using a non-force-free-field extrapolation technique. Importantly, the initial magnetic configuration identifies three-dimensional (3D) magnetic nulls and quasi-separatrix layers (QSLs), which nearly agree with the bright structures appeared in multi-wavelength observations. The Lorentz force associated with the extrapolated field self-consistently generates the dynamics that leads to the magnetic reconnections at the 3D nulls and the QSLs. These reconnections are found to contribute to the pre-flare activities and, ultimately, lead to the development of the flare ribbons. Notably, the anchored spine of the 3D null and the complete absence of flux rope in the flaring region are congruent with the confined nature of the flare. Furthermore, the simulation also suggests the role of reconnections at the 3D null with an open spine in the onset of a jet away from the flaring site.</p></div>","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":"300 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11207-025-02426-y","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we present a magnetohydrodynamics simulation of NOAA active region 11166 to understand the origin of a confined X-class flare that peaked at 23:23 UT on 2011 March 9. The simulation is initiated with a magnetic field extrapolated from the corresponding photospheric magnetogram, using a non-force-free-field extrapolation technique. Importantly, the initial magnetic configuration identifies three-dimensional (3D) magnetic nulls and quasi-separatrix layers (QSLs), which nearly agree with the bright structures appeared in multi-wavelength observations. The Lorentz force associated with the extrapolated field self-consistently generates the dynamics that leads to the magnetic reconnections at the 3D nulls and the QSLs. These reconnections are found to contribute to the pre-flare activities and, ultimately, lead to the development of the flare ribbons. Notably, the anchored spine of the 3D null and the complete absence of flux rope in the flaring region are congruent with the confined nature of the flare. Furthermore, the simulation also suggests the role of reconnections at the 3D null with an open spine in the onset of a jet away from the flaring site.
期刊介绍:
Solar Physics was founded in 1967 and is the principal journal for the publication of the results of fundamental research on the Sun. The journal treats all aspects of solar physics, ranging from the internal structure of the Sun and its evolution to the outer corona and solar wind in interplanetary space. Papers on solar-terrestrial physics and on stellar research are also published when their results have a direct bearing on our understanding of the Sun.