首页 > 最新文献

Solar Physics最新文献

英文 中文
A Proof-of-Concept Technique for Detection of Stellar Eruptive Prominences in Photometric Observations Using Insights from Solar EUV Data in He II 304 Å 利用He II 304太阳EUV数据在光度观测中探测恒星爆发日珥的概念验证技术Å
IF 2.4 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2026-01-30 DOI: 10.1007/s11207-025-02575-0
Stanislav Gunár, Miguel Rojas-Quesada

Stellar eruptive prominences are one of the key components shaping stellar space weather environments. Moreover, due to the association of eruptive prominences with coronal mass ejections and their degrading influence on planetary atmospheres, they play a crucial role in the habitability of exoplanets.

In this article, we used the insights from solar extreme-ultraviolet (EUV) observations to develop and test a technique for the detection of stellar eruptive prominences. We focused on the EUV imaging observations of the entire Sun provided by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) in the 304 Å channel. For this proof-of-concept study, we selected only a few examples of solar eruptive prominences and minor solar flares and analysed them in the Sun-as-a-star mode that mimics the stellar EUV photospheric observations. To validate the results obtained from the SDO/AIA Sun-as-a-star analysis, we used the SDO/Extreme Ultraviolet Variability Experiment (EVE) irradiance measurements.

Our analysis showed markable intensity enhancements in the SDO/AIA 304 Å light curves during the prominence eruptions, with intensity increasing gradually for tens of minutes to several hours with enhancements of up to 1.5%. Flares exhibited a significantly faster intensity increase phase (a few minutes long) leading to large enhancements in the 304 Å channel of up to 8%. The large difference in the duration of the 304 Å intensity rise phases suggests that EUV stellar photometry in the He ii 304 Å line can provide signatures clearly attributable to stellar prominence eruptions or flares. However, development of robust techniques for detection of stellar eruptive prominences using the insights from EUV solar observations will require significantly broader statistical analyses that are beyond the scope of this work.

恒星爆发日珥是形成恒星空间天气环境的关键因素之一。此外,由于爆发日珥与日冕物质抛射的关联及其对行星大气的退化影响,它们在系外行星的可居住性中起着至关重要的作用。在这篇文章中,我们利用来自太阳极紫外线(EUV)观测的见解来开发和测试一种探测恒星爆发日珥的技术。我们重点研究了304 Å通道上太阳动力学观测站(SDO)上的大气成像组件(AIA)提供的整个太阳的EUV成像观测。在这个概念验证研究中,我们只选择了几个太阳爆发日珥和轻微太阳耀斑的例子,并在太阳作为恒星的模式下分析它们,模拟恒星EUV光球观测。为了验证从SDO/AIA太阳作为恒星分析得到的结果,我们使用了SDO/极紫外变异性实验(EVE)辐照度测量。我们的分析显示,在日珥爆发期间,SDO/AIA 304 Å光曲线的强度显著增强,强度逐渐增加,持续数十分钟至数小时,增强幅度高达1.5%。耀斑表现出明显更快的强度增加阶段(几分钟长),导致304 Å通道的大幅增强高达8%。304 Å强度上升阶段持续时间的巨大差异表明,He ii 304 Å线的EUV恒星光度测量可以提供明确归因于恒星突出爆发或耀斑的特征。然而,利用极紫外太阳观测的见解来探测恒星爆发日珥的可靠技术的发展将需要更广泛的统计分析,这超出了本工作的范围。
{"title":"A Proof-of-Concept Technique for Detection of Stellar Eruptive Prominences in Photometric Observations Using Insights from Solar EUV Data in He II 304 Å","authors":"Stanislav Gunár,&nbsp;Miguel Rojas-Quesada","doi":"10.1007/s11207-025-02575-0","DOIUrl":"10.1007/s11207-025-02575-0","url":null,"abstract":"<div><p>Stellar eruptive prominences are one of the key components shaping stellar space weather environments. Moreover, due to the association of eruptive prominences with coronal mass ejections and their degrading influence on planetary atmospheres, they play a crucial role in the habitability of exoplanets.</p><p>In this article, we used the insights from solar extreme-ultraviolet (EUV) observations to develop and test a technique for the detection of stellar eruptive prominences. We focused on the EUV imaging observations of the entire Sun provided by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) in the 304 Å channel. For this proof-of-concept study, we selected only a few examples of solar eruptive prominences and minor solar flares and analysed them in the Sun-as-a-star mode that mimics the stellar EUV photospheric observations. To validate the results obtained from the SDO/AIA Sun-as-a-star analysis, we used the SDO/Extreme Ultraviolet Variability Experiment (EVE) irradiance measurements.</p><p>Our analysis showed markable intensity enhancements in the SDO/AIA 304 Å light curves during the prominence eruptions, with intensity increasing gradually for tens of minutes to several hours with enhancements of up to 1.5%. Flares exhibited a significantly faster intensity increase phase (a few minutes long) leading to large enhancements in the 304 Å channel of up to 8%. The large difference in the duration of the 304 Å intensity rise phases suggests that EUV stellar photometry in the He <span>ii</span> 304 Å line can provide signatures clearly attributable to stellar prominence eruptions or flares. However, development of robust techniques for detection of stellar eruptive prominences using the insights from EUV solar observations will require significantly broader statistical analyses that are beyond the scope of this work.</p></div>","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":"301 2","pages":""},"PeriodicalIF":2.4,"publicationDate":"2026-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11207-025-02575-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146071360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Deep-Learning Framework for Super Resolution Reconstruction of SOHO/MDI Magnetograms SOHO/MDI磁图超分辨率重建的深度学习框架
IF 2.4 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2026-01-28 DOI: 10.1007/s11207-026-02619-z
Vishakha, Divya Punia, Abul Hasan, Anubhav Jha, Krishal Prasad, Elina Bhasin, V. S. Pandey, Ajay K. Sharma

Reconstructing fine-scale magnetic structure from legacy SOHO/MDI magnetograms is essential for extending reliable photospheric diagnostics to periods predating SDO/HMI. We introduce Resolution Enhancement of Solar Magnetogram (RESM), a novel deep-learning framework designed to enhance MDI magnetograms by integrating Feature Enhancement Blocks (FEB) with a Convolutional Block Attention Module (CBAM) to recover compact magnetic concentrations and polarity-inversion structure selectively. RESM achieves strong agreement with HMI, yielding PSNR of 55.6 dB, SSIM of 0.948, PCC of 0.929, and RMSE (G) of 0.071 G compared to state-of-the-art techniques. Physics-aware assessment further shows that RESM preserves multiscale spectral power, maintains signed and unsigned flux budgets, and reproduces coherent PIL contours with high spatial fidelity. A case study of NOAA AR 11131 confirms improved recovery of compact flux bundles and refined PIL topology relative to MDI, enhancing the interpretability of archived observations for active-region characterisation and pre-eruption analysis. These results demonstrate that RESM provides reliable, physically consistent reconstructions of historical magnetograms, expanding their scientific utility.

从传统的SOHO/MDI磁图中重建精细尺度的磁结构对于将可靠的光球诊断扩展到SDO/HMI之前的时期至关重要。我们介绍了太阳磁图的分辨率增强(RESM),这是一种新的深度学习框架,旨在通过集成特征增强块(FEB)和卷积块注意模块(CBAM)来增强MDI磁图,以选择性地恢复紧凑的磁浓度和极性反转结构。与最先进的技术相比,RESM与HMI具有很强的一致性,产生的PSNR为55.6 dB, SSIM为0.948,PCC为0.929,RMSE (G)为0.071 G。物理感知评估进一步表明,RESM保留了多尺度光谱功率,保持了有符号和无符号通量预算,并以高空间保真度再现了一致的PIL轮廓。NOAA AR 11131的一个案例研究证实,相对于MDI,致密通量束的恢复得到了改善,PIL拓扑结构得到了改进,增强了存档观测资料的可解释性,用于活跃区特征和喷发前分析。这些结果表明,RESM提供了可靠的、物理上一致的历史磁图重建,扩大了它们的科学用途。
{"title":"A Deep-Learning Framework for Super Resolution Reconstruction of SOHO/MDI Magnetograms","authors":"Vishakha,&nbsp;Divya Punia,&nbsp;Abul Hasan,&nbsp;Anubhav Jha,&nbsp;Krishal Prasad,&nbsp;Elina Bhasin,&nbsp;V. S. Pandey,&nbsp;Ajay K. Sharma","doi":"10.1007/s11207-026-02619-z","DOIUrl":"10.1007/s11207-026-02619-z","url":null,"abstract":"<div><p>Reconstructing fine-scale magnetic structure from legacy SOHO/MDI magnetograms is essential for extending reliable photospheric diagnostics to periods predating SDO/HMI. We introduce Resolution Enhancement of Solar Magnetogram (RESM), a novel deep-learning framework designed to enhance MDI magnetograms by integrating Feature Enhancement Blocks (FEB) with a Convolutional Block Attention Module (CBAM) to recover compact magnetic concentrations and polarity-inversion structure selectively. RESM achieves strong agreement with HMI, yielding PSNR of 55.6 dB, SSIM of 0.948, PCC of 0.929, and RMSE (G) of 0.071 G compared to state-of-the-art techniques. Physics-aware assessment further shows that RESM preserves multiscale spectral power, maintains signed and unsigned flux budgets, and reproduces coherent PIL contours with high spatial fidelity. A case study of NOAA AR 11131 confirms improved recovery of compact flux bundles and refined PIL topology relative to MDI, enhancing the interpretability of archived observations for active-region characterisation and pre-eruption analysis. These results demonstrate that RESM provides reliable, physically consistent reconstructions of historical magnetograms, expanding their scientific utility.</p></div>","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":"301 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2026-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146082904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shock Signatures of the Successive Type-II Solar Radio Bursts at Meter Wavelength 米波长连续ii型太阳射电暴的激波特征
IF 2.4 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2026-01-28 DOI: 10.1007/s11207-026-02615-3
V. Vasanth

The successive type-II solar radio bursts observed on 31 July 2012 by the Bruny Island Radio Spectrometer (BIRS) in the frequency range between 62 – 6 MHz is reported and analyzed. The first type-II radio burst shows clear fundamental and harmonic band structures, while only one band is observed for the second type-II radio burst and is considered as the harmonic band. The first type-II radio burst is observed in the frequency range of 57 – 27 MHz between 00:03 – 00:09 UT at the harmonic band. The second type-II burst is observed between 00:18 – 00:27 UT in the frequency range of 43 – 17 MHz. The type-II radio bursts are associated with a C6 class flare located at the south–eastern limb (S24E87) and a CME observed from STEREO and LASCO observations. The EUVI signatures of the CME are observed in the ST–B EUVI FOV between 23:56 (on 30 July 2012) to 00:06 UT (on 31 July 2012), and in the ST-B COR1 FOV between 00:10 – 00:35 UT moving within an average speed of 725 ± 101 km s−1. The CME is observed in the LASCO C2 FOV after 00:12 UT as a partial halo CME moving with an average speed of 486 km s−1. The height-time plot shows that the first type-II radio burst was formed by the CME-shock along the shock front and the second type-II radio burst along the shock-dip structure, probably the dip structure results from the shock transiting across the high dense streamer structure. The successive type-II bursts are most likely produced by the single CME shock and their interactions with the streamer structures. The first type-II radio burst by the CME shock and the second type-II radio burst by the CME shock–streamer interactions.

报道并分析了2012年7月31日布鲁尼岛射电光谱仪(BIRS)在62 - 6 MHz频率范围内连续观测到的ii型太阳射电暴。第一个ii型射电暴显示出清晰的基频和谐波带结构,而第二个ii型射电暴只观测到一个波段,被认为是谐波带。在世界时00:03 - 00:09的谐波波段,在57 - 27兆赫的频率范围内观测到第一个ii型射电暴。在43 - 17 MHz的频率范围内,在00:18 - 00:27 UT之间观察到第二次ii型爆发。ii型射电暴与位于东南翼(S24E87)的C6级耀斑以及STEREO和LASCO观测到的CME有关。CME的EUVI特征在ST-B EUVI视场在23:56(2012年7月30日)到00:06 UT(2012年7月31日)之间被观测到,在ST-B COR1视场在00:10 - 00:35 UT之间以725±101 km s−1的平均速度移动。在00:12 UT之后,在LASCO C2 FOV中观测到CME以平均速度486 km s−1的部分晕状CME移动。高时图显示,第一个ii型射电暴是由cme激波沿激波锋面形成的,第二个ii型射电暴是沿激波倾斜结构形成的,倾斜结构可能是激波穿越高密度流状结构造成的。连续的ii型爆发很可能是由单个CME激波及其与流光结构的相互作用产生的。第一个ii型射电暴是由CME激波引起的,第二个ii型射电暴是由CME激波-流相互作用引起的。
{"title":"Shock Signatures of the Successive Type-II Solar Radio Bursts at Meter Wavelength","authors":"V. Vasanth","doi":"10.1007/s11207-026-02615-3","DOIUrl":"10.1007/s11207-026-02615-3","url":null,"abstract":"<div><p>The successive type-II solar radio bursts observed on 31 July 2012 by the Bruny Island Radio Spectrometer (BIRS) in the frequency range between 62 – 6 MHz is reported and analyzed. The first type-II radio burst shows clear fundamental and harmonic band structures, while only one band is observed for the second type-II radio burst and is considered as the harmonic band. The first type-II radio burst is observed in the frequency range of 57 – 27 MHz between 00:03 – 00:09 UT at the harmonic band. The second type-II burst is observed between 00:18 – 00:27 UT in the frequency range of 43 – 17 MHz. The type-II radio bursts are associated with a C6 class flare located at the south–eastern limb (S24E87) and a CME observed from STEREO and LASCO observations. The EUVI signatures of the CME are observed in the ST–B EUVI FOV between 23:56 (on 30 July 2012) to 00:06 UT (on 31 July 2012), and in the ST-B COR1 FOV between 00:10 – 00:35 UT moving within an average speed of 725 ± 101 km s<sup>−1</sup>. The CME is observed in the LASCO C2 FOV after 00:12 UT as a partial halo CME moving with an average speed of 486 km s<sup>−1</sup>. The height-time plot shows that the first type-II radio burst was formed by the CME-shock along the shock front and the second type-II radio burst along the shock-dip structure, probably the dip structure results from the shock transiting across the high dense streamer structure. The successive type-II bursts are most likely produced by the single CME shock and their interactions with the streamer structures. The first type-II radio burst by the CME shock and the second type-II radio burst by the CME shock–streamer interactions.</p></div>","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":"301 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2026-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146082902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differential Rotation of Sunspots During Flares 太阳黑子在耀斑期间的微分旋转
IF 2.4 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2026-01-28 DOI: 10.1007/s11207-026-02606-4
Olivia Newman, Balázs Pintér

The complex nature of sunspots presents a constant challenge in understanding their dynamics and how they interact with their surrounding environment. A new method to analyse sunspot rotations has been presented, by which the rotation of sunspots can be tracked using multiple ellipses fitted throughout the sunspot umbrae. The method is applied to sunspots in active regions of differing degrees of flaring, to determine a correlation between the rotation of the sunspot and the appearance of a flare. The study reveals that sunspots in active regions associated with flares present complex patterns of rotation within the umbral plasma, where multiple regions of rotation can be observed. Further implications of this study could help determine the link between sunspots and flares, which will contribute towards the betterment of flare forecasting.

太阳黑子的复杂性质在理解它们的动力学以及它们如何与周围环境相互作用方面提出了不断的挑战。提出了一种分析太阳黑子旋转的新方法,该方法可以通过在太阳黑子伞上安装多个椭圆来跟踪太阳黑子的旋转。该方法应用于不同程度耀斑活动区域的太阳黑子,以确定太阳黑子的旋转与耀斑出现之间的相关性。研究表明,与耀斑相关的活跃区域的太阳黑子在本影等离子体中呈现复杂的旋转模式,在那里可以观察到多个旋转区域。这项研究的进一步意义可能有助于确定太阳黑子和耀斑之间的联系,这将有助于改善耀斑的预测。
{"title":"Differential Rotation of Sunspots During Flares","authors":"Olivia Newman,&nbsp;Balázs Pintér","doi":"10.1007/s11207-026-02606-4","DOIUrl":"10.1007/s11207-026-02606-4","url":null,"abstract":"<div><p>The complex nature of sunspots presents a constant challenge in understanding their dynamics and how they interact with their surrounding environment. A new method to analyse sunspot rotations has been presented, by which the rotation of sunspots can be tracked using multiple ellipses fitted throughout the sunspot umbrae. The method is applied to sunspots in active regions of differing degrees of flaring, to determine a correlation between the rotation of the sunspot and the appearance of a flare. The study reveals that sunspots in active regions associated with flares present complex patterns of rotation within the umbral plasma, where multiple regions of rotation can be observed. Further implications of this study could help determine the link between sunspots and flares, which will contribute towards the betterment of flare forecasting.</p></div>","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":"301 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2026-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11207-026-02606-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146082880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DETACH: Detection and Tracking Algorithm for Coronal Holes DETACH:冠状孔的检测与跟踪算法
IF 2.4 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2026-01-28 DOI: 10.1007/s11207-026-02609-1
Junyan Liu, Chenglong Shen, Yuwen Pan, Yutian Chi, Yue Zhang, Jingyu Luo, Dongwei Mao, Mengjiao Xu, Zhiyong Zhang, Zhengyang Zhou, Zhihui Zhong, Can Wang, Yang Wang, Yuming Wang

Coronal holes (CHs) are the darkest regions observed on the Sun, serving as key sources of open magnetic fields and fast solar-wind streams. Accurate and consistent delineation of their boundaries is crucial for analyzing their physical properties, understanding solar dynamics, and ultimately improving space weather forecasts. However, developing precise and automated methods for their detection and tracking across extensive observational datasets remains a significant challenge. To address this, we developed the DEtection and Tracking Algorithm for Coronal Holes (DETACH), leveraging advanced machine-learning techniques. DETACH was specifically developed and rigorously validated using extreme ultraviolet (EUV) 193 Å wavelength images from the Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA) instrument. This novel algorithm significantly advances prior CH detection models, notably minimizing the erroneous identification of solar filaments as CHs and achieving superior accuracy across a comprehensive suite of evaluation metrics. Additionally, another key innovation of DETACH is its robust and precise CH tracking functionality across different observational times, a crucial capability largely absent in previous methodologies. DETACH offers a state-of-the-art, high-performance solution for accurate coronal hole identification and tracking, providing invaluable data and a powerful tool to enhance our understanding of solar activity and advance space-weather prediction capabilities.

日冕洞(CHs)是在太阳上观测到的最黑暗的区域,是开放磁场和快速太阳风流的关键来源。准确和一致地划定它们的边界对于分析它们的物理性质、了解太阳动力学以及最终改进空间天气预报至关重要。然而,在广泛的观测数据集中开发精确和自动化的检测和跟踪方法仍然是一项重大挑战。为了解决这个问题,我们利用先进的机器学习技术开发了冠状洞检测和跟踪算法(DETACH)。DETACH是专门开发的,并使用来自太阳动力学天文台(SDO)大气成像组件(AIA)仪器的极紫外(EUV) 193 Å波长图像进行严格验证。这种新算法显著地改进了先前的碳氢化合物检测模型,特别是最大限度地减少了对太阳能灯丝的错误识别,并在一套全面的评估指标中实现了卓越的准确性。此外,DETACH的另一个关键创新是其在不同观测时间内强大而精确的CH跟踪功能,这是以前方法中基本缺乏的关键功能。DETACH为准确的日冕洞识别和跟踪提供了最先进的高性能解决方案,提供了宝贵的数据和强大的工具,以增强我们对太阳活动的理解和推进空间天气预测能力。
{"title":"DETACH: Detection and Tracking Algorithm for Coronal Holes","authors":"Junyan Liu,&nbsp;Chenglong Shen,&nbsp;Yuwen Pan,&nbsp;Yutian Chi,&nbsp;Yue Zhang,&nbsp;Jingyu Luo,&nbsp;Dongwei Mao,&nbsp;Mengjiao Xu,&nbsp;Zhiyong Zhang,&nbsp;Zhengyang Zhou,&nbsp;Zhihui Zhong,&nbsp;Can Wang,&nbsp;Yang Wang,&nbsp;Yuming Wang","doi":"10.1007/s11207-026-02609-1","DOIUrl":"10.1007/s11207-026-02609-1","url":null,"abstract":"<div><p>Coronal holes (CHs) are the darkest regions observed on the Sun, serving as key sources of open magnetic fields and fast solar-wind streams. Accurate and consistent delineation of their boundaries is crucial for analyzing their physical properties, understanding solar dynamics, and ultimately improving space weather forecasts. However, developing precise and automated methods for their detection and tracking across extensive observational datasets remains a significant challenge. To address this, we developed the DEtection and Tracking Algorithm for Coronal Holes (DETACH), leveraging advanced machine-learning techniques. DETACH was specifically developed and rigorously validated using extreme ultraviolet (EUV) 193 Å wavelength images from the Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA) instrument. This novel algorithm significantly advances prior CH detection models, notably minimizing the erroneous identification of solar filaments as CHs and achieving superior accuracy across a comprehensive suite of evaluation metrics. Additionally, another key innovation of DETACH is its robust and precise CH tracking functionality across different observational times, a crucial capability largely absent in previous methodologies. DETACH offers a state-of-the-art, high-performance solution for accurate coronal hole identification and tracking, providing invaluable data and a powerful tool to enhance our understanding of solar activity and advance space-weather prediction capabilities.</p></div>","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":"301 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2026-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146082905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polarimeter to Unify the Corona and Heliosphere (PUNCH) 统一日冕和日光层的偏振计(PUNCH)
IF 2.4 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2026-01-27 DOI: 10.1007/s11207-026-02608-2
Craig E. DeForest, Sarah E. Gibson, Ronnie Killough, Nick R. Waltham, Matt N. Beasley, Robin C. Colaninno, Glenn T. Laurent, Daniel B. Seaton, J. Marcus Hughes, Madhulika Guhathakurta, Nicholeen M. Viall, Raphael Attié, Dipankar Banerjee, Luke Barnard, Doug A. Biesecker, Mario M. Bisi, Volker Bothmer, Antonina Brody, Joan Burkepile, Iver H. Cairns, Jennifer L. Campbell, Traci R. Case, Amir Caspi, David Cheney, Rohit Chhiber, Matthew J. Clapp, Steven R. Cranmer, Jackie A. Davies, Curt A. de Koning, Mihir I. Desai, Heather A. Elliott, Samaiyah Farid, Bea Gallardo-Lacourt, Chris Gilly, Caden Gobat, Mary H. Hanson, Richard A. Harrison, Donald M. Hassler, Chase Henley, Alan M. Henry, Russell A. Howard, Bernard V. Jackson, Samuel Jones, Don Kolinski, Derek A. Lamb, Florine Lehtinen, Chris Lowder, Anna Malanushenko, William H. Matthaeus, David J. McComas, Jacob McGee, Huw Morgan, Divya Oberoi, Dusan Odstrcil, Chris Parmenter, Ritesh Patel, Francesco Pecora, Steve Persyn, Victor J. Pizzo, Simon P. Plunkett, Elena Provornikova, Nour Eddine Raouafi, Jillian A. Redfern, Alexis P. Rouillard, Kelly D. Smith, Keith B. Smith, Zachary S. Talpas, S. James Tappin, Arnaud Thernisien, Barbara J. Thompson, Samuel Van Kooten, Kevin J. Walsh, David F. Webb, William L. Wells, Matthew J. West, Zachary Wiens, Yan Yang, Andrei N. Zhukov

The Polarimeter to Unify the Corona and Heliosphere (PUNCH) mission is a NASA Small Explorer to determine the cross-scale processes that unify the solar corona and heliosphere. PUNCH has two science objectives: (1) understand how coronal structures become the ambient solar wind, and (2) understand the dynamic evolution of transient structures, such as coronal mass ejections, in the young solar wind. To address these objectives, PUNCH uses a constellation of four small spacecraft in Sun-synchronous low Earth orbit, to collect linearly polarized images of the K corona and young solar wind. The four spacecraft each carry one visible-light imager in a 1 + 3 configuration: a single Narrow Field Imager solar coronagraph captures images of the outer corona at all position angles, and at solar elongations from 1.5° (6 R) to 8° (32 R); and three separate Wide Field Imager heliospheric imagers together capture views of the entire inner solar system, at solar elongations from 3° (12 R) to 45° (180 R) from the Sun. PUNCH images include linear-polarization data, to enable inferring the three-dimensional structure of visible features without stereoscopy. The instruments are matched in wavelength passband, support overlapping instantaneous fields of view, and are operated synchronously, to act as a single “virtual instrument” with a 90 wide field of view, centered on the Sun. PUNCH launched in March of 2025 and began science operations in June of 2025. PUNCH has an open data policy with no proprietary period, and PUNCH Science Team Meetings are open to all.

统一日冕和日球层的偏振计(PUNCH)任务是美国宇航局的一个小型探测器,用于确定统一日冕和日球层的跨尺度过程。PUNCH有两个科学目标:(1)了解日冕结构如何成为环境太阳风;(2)了解瞬态结构(如日冕物质抛射)在年轻太阳风中的动态演变。为了实现这些目标,PUNCH利用太阳同步低地球轨道上的四个小型航天器组成的星座,收集K日冕和年轻太阳风的线偏振图像。四艘太空船各携带一个1 + 3配置的可见光成像仪:一个单一的窄场成像仪太阳日冕仪捕获所有位置角度的外日冕图像,以及太阳延伸从1.5°(6 R⊙)到8°(32 R⊙)的图像;和三个独立的宽视场成像仪的日球层成像仪一起捕捉整个内太阳系的视图,在太阳延伸从3°(12 R⊙)到45°(180 R⊙)。PUNCH图像包括线偏振数据,可以在没有立体感的情况下推断可见特征的三维结构。这些仪器在波长通带上是匹配的,支持重叠的瞬时视场,并同步操作,作为一个单一的“虚拟仪器”,具有90°宽的视场,以太阳为中心。PUNCH于2025年3月发射,并于2025年6月开始科学操作。PUNCH有一个没有专有期限的开放数据政策,PUNCH科学团队会议对所有人开放。
{"title":"Polarimeter to Unify the Corona and Heliosphere (PUNCH)","authors":"Craig E. DeForest,&nbsp;Sarah E. Gibson,&nbsp;Ronnie Killough,&nbsp;Nick R. Waltham,&nbsp;Matt N. Beasley,&nbsp;Robin C. Colaninno,&nbsp;Glenn T. Laurent,&nbsp;Daniel B. Seaton,&nbsp;J. Marcus Hughes,&nbsp;Madhulika Guhathakurta,&nbsp;Nicholeen M. Viall,&nbsp;Raphael Attié,&nbsp;Dipankar Banerjee,&nbsp;Luke Barnard,&nbsp;Doug A. Biesecker,&nbsp;Mario M. Bisi,&nbsp;Volker Bothmer,&nbsp;Antonina Brody,&nbsp;Joan Burkepile,&nbsp;Iver H. Cairns,&nbsp;Jennifer L. Campbell,&nbsp;Traci R. Case,&nbsp;Amir Caspi,&nbsp;David Cheney,&nbsp;Rohit Chhiber,&nbsp;Matthew J. Clapp,&nbsp;Steven R. Cranmer,&nbsp;Jackie A. Davies,&nbsp;Curt A. de Koning,&nbsp;Mihir I. Desai,&nbsp;Heather A. Elliott,&nbsp;Samaiyah Farid,&nbsp;Bea Gallardo-Lacourt,&nbsp;Chris Gilly,&nbsp;Caden Gobat,&nbsp;Mary H. Hanson,&nbsp;Richard A. Harrison,&nbsp;Donald M. Hassler,&nbsp;Chase Henley,&nbsp;Alan M. Henry,&nbsp;Russell A. Howard,&nbsp;Bernard V. Jackson,&nbsp;Samuel Jones,&nbsp;Don Kolinski,&nbsp;Derek A. Lamb,&nbsp;Florine Lehtinen,&nbsp;Chris Lowder,&nbsp;Anna Malanushenko,&nbsp;William H. Matthaeus,&nbsp;David J. McComas,&nbsp;Jacob McGee,&nbsp;Huw Morgan,&nbsp;Divya Oberoi,&nbsp;Dusan Odstrcil,&nbsp;Chris Parmenter,&nbsp;Ritesh Patel,&nbsp;Francesco Pecora,&nbsp;Steve Persyn,&nbsp;Victor J. Pizzo,&nbsp;Simon P. Plunkett,&nbsp;Elena Provornikova,&nbsp;Nour Eddine Raouafi,&nbsp;Jillian A. Redfern,&nbsp;Alexis P. Rouillard,&nbsp;Kelly D. Smith,&nbsp;Keith B. Smith,&nbsp;Zachary S. Talpas,&nbsp;S. James Tappin,&nbsp;Arnaud Thernisien,&nbsp;Barbara J. Thompson,&nbsp;Samuel Van Kooten,&nbsp;Kevin J. Walsh,&nbsp;David F. Webb,&nbsp;William L. Wells,&nbsp;Matthew J. West,&nbsp;Zachary Wiens,&nbsp;Yan Yang,&nbsp;Andrei N. Zhukov","doi":"10.1007/s11207-026-02608-2","DOIUrl":"10.1007/s11207-026-02608-2","url":null,"abstract":"<div><p>The Polarimeter to Unify the Corona and Heliosphere (PUNCH) mission is a NASA Small Explorer to determine the cross-scale processes that unify the solar corona and heliosphere. PUNCH has two science objectives: (1) understand how coronal structures become the ambient solar wind, and (2) understand the dynamic evolution of transient structures, such as coronal mass ejections, in the young solar wind. To address these objectives, PUNCH uses a constellation of four small spacecraft in Sun-synchronous low Earth orbit, to collect linearly polarized images of the K corona and young solar wind. The four spacecraft each carry one visible-light imager in a 1 + 3 configuration: a single Narrow Field Imager solar coronagraph captures images of the outer corona at all position angles, and at solar elongations from 1.5° (6 R<sub>⊙</sub>) to 8° (32 R<sub>⊙</sub>); and three separate Wide Field Imager heliospheric imagers together capture views of the entire inner solar system, at solar elongations from 3° (12 R<sub>⊙</sub>) to 45° (180 R<sub>⊙</sub>) from the Sun. PUNCH images include linear-polarization data, to enable inferring the three-dimensional structure of visible features without stereoscopy. The instruments are matched in wavelength passband, support overlapping instantaneous fields of view, and are operated synchronously, to act as a single “virtual instrument” with a 90<sup>∘</sup> wide field of view, centered on the Sun. PUNCH launched in March of 2025 and began science operations in June of 2025. PUNCH has an open data policy with no proprietary period, and PUNCH Science Team Meetings are open to all.</p></div>","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":"301 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2026-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11207-026-02608-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146082691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Time Variations of the Mean Magnetic Flux in Active Regions of Different Magneto-Morphological Classes 不同磁形态类活跃区平均磁通量的时间变化
IF 2.4 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2026-01-27 DOI: 10.1007/s11207-026-02607-3
Anastasiya Zhukova, Valentina Abramenko

Using a recently suggested magneto-morphological classification (MMC, Abramenko (2021)) of solar active regions (ARs), we explored 3048 ARs, observed from 12 May 1996 to 27 December 2021. Magnetograms were acquired with the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO) and with the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). ARs were separated between three classes: class A - regular ARs (bipoles which follow the empirical rules compatible with the mean field dynamo theory); class B - irregular ARs (“wrong” bipoles and multipolars); class U - unipolar sunspots. An aim of the present study is to explore time variations of a typical unsigned magnetic flux of ARs of different classes. The typical flux was acquired as the mean flux over all ARs of a given class observed during one solar rotation. The time profiles of the mean fluxes for different classes were compared. We found that, except for periods of deep solar minima, the mean flux of B-class ARs always dominates that of A-class ARs, and, what is the most important, the time profile of B-class ARs is highly intermittent versus the rather smooth and quazi-constant A-class profile. Intermittency implies a direct involvement of turbulence. We conclude that, through the entire active phase, the Sun is capable of producing regular moderate ARs at a quazi-constant rate along with the production of large and complex irregular ARs in the very intermittent manner. The result is the first observational evidence for the long-standing speculative assumption on the involvement of the convection zone turbulence into the regular global dynamo-process on a stage of the active regions formation.

利用最近提出的太阳活动区磁形态分类(MMC, Abramenko(2021)),我们研究了1996年5月12日至2021年12月27日观测到的3048个太阳活动区。磁图是由太阳和日光层天文台(SOHO)上的迈克尔逊多普勒成像仪(MDI)和太阳动力学天文台(SDO)上的日震和磁成像仪(HMI)获得的。ar被分为三类:A类-规则ar(遵循与平均场发电机理论相容的经验规则的双极子);B类-不规则极性(“错误的”双极和多极);U类——单极太阳黑子。本研究的目的是探讨不同类别的典型无符号磁通量的时间变化。典型通量是在一次太阳旋转期间观测到的给定类别的所有ar的平均通量。比较了不同类型的平均通量的时间分布。我们发现,除了太阳深度极小期外,b类ar的平均通量始终高于a类ar,而且最重要的是,b类ar的时间剖面具有高度的间歇性,而a类ar的时间剖面则相当平滑和准常数。间歇性意味着湍流的直接参与。我们的结论是,在整个活动阶段,太阳能够以准常数的速率产生规则的中等ARs,同时以非常间歇性的方式产生大型和复杂的不规则ARs。这一结果首次证实了长期以来的推测,即在活动区域形成的某个阶段,对流区湍流参与了规则的全球动力过程。
{"title":"Time Variations of the Mean Magnetic Flux in Active Regions of Different Magneto-Morphological Classes","authors":"Anastasiya Zhukova,&nbsp;Valentina Abramenko","doi":"10.1007/s11207-026-02607-3","DOIUrl":"10.1007/s11207-026-02607-3","url":null,"abstract":"<div><p>Using a recently suggested magneto-morphological classification (MMC, Abramenko (2021)) of solar active regions (ARs), we explored 3048 ARs, observed from 12 May 1996 to 27 December 2021. Magnetograms were acquired with the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO) and with the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). ARs were separated between three classes: class A - regular ARs (bipoles which follow the empirical rules compatible with the mean field dynamo theory); class B - irregular ARs (“wrong” bipoles and multipolars); class U - unipolar sunspots. An aim of the present study is to explore time variations of a typical unsigned magnetic flux of ARs of different classes. The typical flux was acquired as the mean flux over all ARs of a given class observed during one solar rotation. The time profiles of the mean fluxes for different classes were compared. We found that, except for periods of deep solar minima, the mean flux of B-class ARs always dominates that of A-class ARs, and, what is the most important, the time profile of B-class ARs is highly intermittent versus the rather smooth and quazi-constant A-class profile. Intermittency implies a direct involvement of turbulence. We conclude that, through the entire active phase, the Sun is capable of producing regular moderate ARs at a quazi-constant rate along with the production of large and complex irregular ARs in the very intermittent manner. The result is the first observational evidence for the long-standing speculative assumption on the involvement of the convection zone turbulence into the regular global dynamo-process on a stage of the active regions formation.</p></div>","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":"301 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2026-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146082644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial Appreciation 编辑升值
IF 2.4 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2026-01-26 DOI: 10.1007/s11207-026-02622-4
Iñigo Arregui, Cristina H. Mandrini, Lidia van Driel-Gesztelyi, Marco Velli, Frank Schulz
{"title":"Editorial Appreciation","authors":"Iñigo Arregui,&nbsp;Cristina H. Mandrini,&nbsp;Lidia van Driel-Gesztelyi,&nbsp;Marco Velli,&nbsp;Frank Schulz","doi":"10.1007/s11207-026-02622-4","DOIUrl":"10.1007/s11207-026-02622-4","url":null,"abstract":"","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":"301 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2026-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146082944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Yohkoh BCS Search for Hot Prograde Flows 热推进流的Yohkoh BCS搜索
IF 2.4 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2026-01-26 DOI: 10.1007/s11207-025-02603-z
Joseph F. Montgomery, Hugh Hudson

Recent spectroscopic analyses of observations from the EUV Variability Experiment (EVE) appear to show the presence of hot high-speed prograde flows in the solar atmosphere associated with solar active regions. However, the existence of these flows has not yet been confirmed in observations from other instruments or at other wavelengths. In this work we attempt to determine whether similar prograde flows can also be detected in soft X-ray spectroscopic data. To examine this, we analyze soft X-ray spectroscopic data from the Yohkoh Bragg Crystal Spectrometer (BCS). Since BCS was a whole-Sun instrument, in order to ensure clear spectroscopic results from a single active region, we restrict consideration to intervals when only a single active region moved across the Sun from limb to limb. We found three suitable intervals. Our analysis of the data for these intervals do not indicate the presence of prograde flows in soft X-rays, and we establish an upper limit of about 30 km s−1 for such a pattern. Three possibilities may account for this difference with the EVE observations: (a) the hot prograde flows may not exist, and the EVE result is an artifact; (b) the hot prograde flows may not occur at the higher temperatures observed by soft X-rays; (c) Yohkoh BCS may only have been capable of observing flare emissions and lacked the sensitivity necessary to detect quiescent active regions, suggesting that the physics of flaring loops may differ from that of slowly-varying active-region loops. We favor explanation (a) but have not identified the exact nature of the artifact.

最近对EUV变异性实验(EVE)观测结果的光谱分析显示,太阳大气中与太阳活动区相关的热高速渐进流的存在。然而,这些流的存在还没有在其他仪器或其他波长的观测中得到证实。在这项工作中,我们试图确定是否可以在软x射线光谱数据中检测到类似的渐进流。为了验证这一点,我们分析了来自Yohkoh Bragg晶体光谱仪(BCS)的软x射线光谱数据。由于BCS是一种全太阳仪器,为了确保从单个活动区域获得清晰的光谱结果,我们限制了只考虑单个活动区域从太阳的一个分支移动到另一个分支的时间间隔。我们找到了三个合适的时间间隔。我们对这些间隔的数据分析并没有表明软x射线中存在递进流,我们建立了这种模式的上限约为30 km s−1。有三种可能性可以解释这种与EVE观测结果的差异:(a)热渐进流可能不存在,EVE结果是一个伪产物;(b)在软x射线观测到的较高温度下,可能不会发生热进流;(c) Yohkoh BCS可能只能够观测耀斑发射,缺乏探测静止活动区所需的灵敏度,这表明耀斑环的物理性质可能与缓慢变化的活动区环的物理性质不同。我们赞成解释(a),但还没有确定工件的确切性质。
{"title":"A Yohkoh BCS Search for Hot Prograde Flows","authors":"Joseph F. Montgomery,&nbsp;Hugh Hudson","doi":"10.1007/s11207-025-02603-z","DOIUrl":"10.1007/s11207-025-02603-z","url":null,"abstract":"<div><p>Recent spectroscopic analyses of observations from the EUV Variability Experiment (EVE) appear to show the presence of hot high-speed prograde flows in the solar atmosphere associated with solar active regions. However, the existence of these flows has not yet been confirmed in observations from other instruments or at other wavelengths. In this work we attempt to determine whether similar prograde flows can also be detected in soft X-ray spectroscopic data. To examine this, we analyze soft X-ray spectroscopic data from the <i>Yohkoh</i> Bragg Crystal Spectrometer (BCS). Since BCS was a whole-Sun instrument, in order to ensure clear spectroscopic results from a single active region, we restrict consideration to intervals when only a single active region moved across the Sun from limb to limb. We found three suitable intervals. Our analysis of the data for these intervals do not indicate the presence of prograde flows in soft X-rays, and we establish an upper limit of about 30 km s<sup>−1</sup> for such a pattern. Three possibilities may account for this difference with the EVE observations: (a) the hot prograde flows may not exist, and the EVE result is an artifact; (b) the hot prograde flows may not occur at the higher temperatures observed by soft X-rays; (c) <i>Yohkoh</i> BCS may only have been capable of observing flare emissions and lacked the sensitivity necessary to detect quiescent active regions, suggesting that the physics of flaring loops may differ from that of slowly-varying active-region loops. We favor explanation (a) but have not identified the exact nature of the artifact.</p></div>","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":"301 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2026-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146082943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Citizen CATE 2024: Extending Totality During the 8 April 2024 Total Solar Eclipse with a Distributed Network of Community Participants 公民CATE 2024:在社区参与者的分布式网络中延长2024年4月8日日全食期间的全食
IF 2.4 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2026-01-22 DOI: 10.1007/s11207-025-02588-9
Sarah A. Kovac, Amir Caspi, Daniel B. Seaton, Paul Bryans, Joan R. Burkepile, Sarah J. Davis, Craig E. DeForest, David Elmore, Sanjay Gosain, Rebecca Haacker, Marcus Hughes, Jason Jackiewicz, Viliam Klein, Derek Lamb, Valentin Martinez Pillet, Evy McUmber, Ritesh Patel, Kevin Reardon, Willow Reed, Anna Tosolini, Andrei E. Ursache, John K. Williams, Padma A. Yanamandra-Fisher, Daniel W. Zietlow, John Carini, Charles H. Gardner, Shawn Laatsch, Patricia H. Reiff, Nikita Saini, Rachael L. Weir, Kira F. Baasch, Jacquelyn Bellefontaine, Timothy D. Collins, Ryan J. Ferko, Leticia Ferrer, Margaret Hill, Jonathan M. Kessler, Jeremy A. Lusk, Jennifer Miller-Ray, Catarino Morales III, Brian W. Murphy, Kayla L. Olson, Mark J. Percy, Gwen Perry, Andrea A. Rivera, Aarran W. Shaw, Erik Stinnett, Eden L. Thompson, Hazel S. Wilkins, Yue Zhang, Angel Allison, John J. Alves, Angelica A. Alvis, Lucinda J. Alvis, Alvin J. G. Angeles, Aa’lasia Batchelor, Robert Benedict, Amelia Bettati, Abbie Bevill, Katherine Bibee Wolfson, Christina Raye Bingham, Bradley A. Bolton, Iris P. Borunda, Mario F. Borunda, Adam Bowen, Daniel L. Brookshier, MerRick Brown, Fred Bruenjes, Lisa Bunselmeier, Brian E. Burke, Bo Chen, Chi-Jui Chen, Zhean Chen, Marcia Chenevey Long, Nathaniel D. Cook, Tommy Copeland, Adrian J. Corter, Lawson L. Corter, Michael J. Corter, Theresa N. Costilow, Lori E. Cypert, Derrion Crouch-Bond, Beata Csatho, Clayton C. Cundiff, Stella S. Cundiff, Darrell DeMotta, Judy Dickey, Hannah L. Dirlam, Nathan Dodson, Donovan Driver, Jennifer Dudley-Winter, Justin Dulyanunt, Jordan R. Duncan, Scarlett C. Dyer, Lizabeth D. Eason, Timothy E. Eason, Jerry L. Edwards, Jaylynn N. Eisenhour, Ogheneovo N. Erho, Elijah J. Fleming, Andrew J. Fritsch III, Stephanie D. Frosch, Sahir Gagan, Joshua Gamble, Caitlyn L. Geisheimer, Ashleyahna George, Treva D. Gough, Jo Lin Gowing, Robert Greeson, Julie D. Griffin, Justin L. Grover, Simon L. Grover, Annie Hadley, Austin S. Hailey, Katrina B. Halasa, Jacob Harrison, Rachael Heltz Herman, Melissa Hentnik, Robert Hentnik, Mark Herman, Brenda G. Henderson, David T. Henderson, J. Michael Henthorn II, Thomas Hogue, Billy J. House, Toni Ray Howe, Brianna N. Isola, Mark A. Iwen, Jordyn Johnson, Richard O. Johnson III, Sophia P. Jones, Hanieh Karimi, Katy R. Kiser, Michael K. Koomson Jr., Morgan M. Koss, Ryan P. Kovacs, Carol A. Kovalak Martin, Kassidy Lange, Kyle Lawrence Leathers, Michael H. Lee, Kevin W. Lehman, Garret R. Leopold, Hsiao-Chun Lin, Heather Liptak, Logan Liptak, Michael A. Liptak, Alonso Lopez, Evan L. Lopez, Don Loving, April Luehmann, Kristen M. Lusk, Tia L. MacDonald, Ian A. Mannings, Priscilla Marin, Christopher J. Martin, Jamie Martin, Alejandra Olivia Martinez, Terah L. Martinez, Elizabeth S. Mays, Seth McGowan, Edward M. McHenry III, Kaz Meszaros, Tyler J. Metivier, Quinn W. Miller, Adam V. Miranda, Carlos Miranda, Pranvera Miranda, David M. W. Mitchell, Lydia N. Montgomery, Lillie B. Moore, Christopher P. Morse, Ira S. Morse, Raman Mukundan, Patrick T. Murphy, Nicarao J. Narvaez, Ahmed Nasreldin, Thomas Neel, Travis A. Nelson, Ellianna Nestlerode, Adam Z. Neuville, Brian A. Neuville, Allison Newberg, Jeremy L. Nicholson, Makenna F. Nickens, Sining Niu, Jedidiah O’Brien, Luis A. Otero, Jacob A. Ott, Joel A. Ott, Justin M. Ott, Michael E. Ott, Shekhar Pant, Ivan Parmuzin, Eric J. Parr, Sagar P. Paudel, Courtney M. Payne, Hayden B. Phillips, Elizabeth R. Prinkey, Kwesi A. Quagraine, Wesley J. Reddish, Azariah Rhodes, Stephen Kyle Rimler, Carlyn S. Rocazella, Tiska E. Rodgers, Devalyn Rogers, Oren R. Ross, Benjamin D. Roth, Melissa Rummel, John F. Rusho, Michael W. Sampson, Sophia Saucerman, James Scoville, Martin Wayne Seifert, Michael H. Seile Sr., Asad Shahab, Thomas G. Skirko, David C. Smith, Emily R. Snode-Brenneman, Cassandra Spaulding, Neha Srivastava, Amy L. Strecker, Aidan Sweets, Morghan Taylor, Deborah S. Teuscher, Owen Totten, Stephen Totten, Stephanie Totten, Andrew Totten, Corina R. Ursache, Susan V. Benedict, Yolanda Vasquez, R. Anthony Vincent, Alan Webb, Walter Webb, Roderick M. Weinschenk, Sedrick Weinschenk, Cash A. Wendel, Elisabeth Wheeler, Bethany A. Whitehouse, Gabriel J. Whitehouse, David A. Wiesner, Philip J. Williams, John A. Zakelj

The Citizen CATE 2024 next-generation experiment placed 43 identical telescope and camera setups along the path of totality during the total solar eclipse (TSE) on 8 April 2024 to capture a 60-minute movie of the inner and middle solar corona in polarized visible light. The 2024 TSE path covered a large geographic swath of North America and we recruited and trained 36 teams of community participants (“citizen scientists”) representative of the various communities along the path of totality. Afterwards, these teams retained the equipment in their communities for on-going education and public engagement activities. Participants ranged from students (K12, undergraduate, and graduate), educators, and adult learners to amateur and professional astronomers. In addition to equipment for their communities, CATE 2024 teams received hands-on telescope training, educational and learning materials, and instruction on data analysis techniques. CATE 2024 used high-cadence, high-dynamic-range (HDR) polarimetric observations of the solar corona to characterize the physical processes that shape its heating, structure, and evolution at scales and sensitivities that cannot be studied outside of a TSE. Conventional eclipse observations do not span sufficient time to capture changing coronal topology, but the extended observation from CATE 2024 does. Analysis of the fully calibrated dataset will provide deeper insight and understanding into these critical physical processes. We present an overview of the CATE 2024 project, including how we engaged local communities along the path of totality, and the first look at CATE 2024 data products from the 2024 TSE.

Citizen CATE 2024下一代实验在2024年4月8日日全食(TSE)期间沿日全食路径放置了43台相同的望远镜和相机装置,以偏振可见光拍摄了60分钟的内日冕和中日冕电影。2024年的TSE路径覆盖了北美的大片地理区域,我们招募并培训了36个社区参与者团队(“公民科学家”),代表了全食路径上的各个社区。之后,这些团队将这些设备保留在他们的社区,用于持续的教育和公众参与活动。参与者包括学生(K12、本科生和研究生)、教育工作者、成人学习者、业余和专业天文学家。除了为社区提供设备外,CATE 2024团队还接受了望远镜实践培训、教育和学习材料以及数据分析技术指导。CATE 2024使用太阳日冕的高节奏、高动态范围(HDR)极化观测来表征形成其加热、结构和演化的物理过程,其尺度和灵敏度无法在TSE之外进行研究。传统的日食观测不能跨越足够的时间来捕捉日冕拓扑的变化,但CATE 2024的扩展观测可以。对完全校准的数据集的分析将提供对这些关键物理过程的更深入的见解和理解。我们概述了CATE 2024项目,包括我们如何在整体路径上与当地社区合作,以及首次查看2024年TSE的CATE 2024数据产品。
{"title":"Citizen CATE 2024: Extending Totality During the 8 April 2024 Total Solar Eclipse with a Distributed Network of Community Participants","authors":"Sarah A. Kovac,&nbsp;Amir Caspi,&nbsp;Daniel B. Seaton,&nbsp;Paul Bryans,&nbsp;Joan R. Burkepile,&nbsp;Sarah J. Davis,&nbsp;Craig E. DeForest,&nbsp;David Elmore,&nbsp;Sanjay Gosain,&nbsp;Rebecca Haacker,&nbsp;Marcus Hughes,&nbsp;Jason Jackiewicz,&nbsp;Viliam Klein,&nbsp;Derek Lamb,&nbsp;Valentin Martinez Pillet,&nbsp;Evy McUmber,&nbsp;Ritesh Patel,&nbsp;Kevin Reardon,&nbsp;Willow Reed,&nbsp;Anna Tosolini,&nbsp;Andrei E. Ursache,&nbsp;John K. Williams,&nbsp;Padma A. Yanamandra-Fisher,&nbsp;Daniel W. Zietlow,&nbsp;John Carini,&nbsp;Charles H. Gardner,&nbsp;Shawn Laatsch,&nbsp;Patricia H. Reiff,&nbsp;Nikita Saini,&nbsp;Rachael L. Weir,&nbsp;Kira F. Baasch,&nbsp;Jacquelyn Bellefontaine,&nbsp;Timothy D. Collins,&nbsp;Ryan J. Ferko,&nbsp;Leticia Ferrer,&nbsp;Margaret Hill,&nbsp;Jonathan M. Kessler,&nbsp;Jeremy A. Lusk,&nbsp;Jennifer Miller-Ray,&nbsp;Catarino Morales III,&nbsp;Brian W. Murphy,&nbsp;Kayla L. Olson,&nbsp;Mark J. Percy,&nbsp;Gwen Perry,&nbsp;Andrea A. Rivera,&nbsp;Aarran W. Shaw,&nbsp;Erik Stinnett,&nbsp;Eden L. Thompson,&nbsp;Hazel S. Wilkins,&nbsp;Yue Zhang,&nbsp;Angel Allison,&nbsp;John J. Alves,&nbsp;Angelica A. Alvis,&nbsp;Lucinda J. Alvis,&nbsp;Alvin J. G. Angeles,&nbsp;Aa’lasia Batchelor,&nbsp;Robert Benedict,&nbsp;Amelia Bettati,&nbsp;Abbie Bevill,&nbsp;Katherine Bibee Wolfson,&nbsp;Christina Raye Bingham,&nbsp;Bradley A. Bolton,&nbsp;Iris P. Borunda,&nbsp;Mario F. Borunda,&nbsp;Adam Bowen,&nbsp;Daniel L. Brookshier,&nbsp;MerRick Brown,&nbsp;Fred Bruenjes,&nbsp;Lisa Bunselmeier,&nbsp;Brian E. Burke,&nbsp;Bo Chen,&nbsp;Chi-Jui Chen,&nbsp;Zhean Chen,&nbsp;Marcia Chenevey Long,&nbsp;Nathaniel D. Cook,&nbsp;Tommy Copeland,&nbsp;Adrian J. Corter,&nbsp;Lawson L. Corter,&nbsp;Michael J. Corter,&nbsp;Theresa N. Costilow,&nbsp;Lori E. Cypert,&nbsp;Derrion Crouch-Bond,&nbsp;Beata Csatho,&nbsp;Clayton C. Cundiff,&nbsp;Stella S. Cundiff,&nbsp;Darrell DeMotta,&nbsp;Judy Dickey,&nbsp;Hannah L. Dirlam,&nbsp;Nathan Dodson,&nbsp;Donovan Driver,&nbsp;Jennifer Dudley-Winter,&nbsp;Justin Dulyanunt,&nbsp;Jordan R. Duncan,&nbsp;Scarlett C. Dyer,&nbsp;Lizabeth D. Eason,&nbsp;Timothy E. Eason,&nbsp;Jerry L. Edwards,&nbsp;Jaylynn N. Eisenhour,&nbsp;Ogheneovo N. Erho,&nbsp;Elijah J. Fleming,&nbsp;Andrew J. Fritsch III,&nbsp;Stephanie D. Frosch,&nbsp;Sahir Gagan,&nbsp;Joshua Gamble,&nbsp;Caitlyn L. Geisheimer,&nbsp;Ashleyahna George,&nbsp;Treva D. Gough,&nbsp;Jo Lin Gowing,&nbsp;Robert Greeson,&nbsp;Julie D. Griffin,&nbsp;Justin L. Grover,&nbsp;Simon L. Grover,&nbsp;Annie Hadley,&nbsp;Austin S. Hailey,&nbsp;Katrina B. Halasa,&nbsp;Jacob Harrison,&nbsp;Rachael Heltz Herman,&nbsp;Melissa Hentnik,&nbsp;Robert Hentnik,&nbsp;Mark Herman,&nbsp;Brenda G. Henderson,&nbsp;David T. Henderson,&nbsp;J. Michael Henthorn II,&nbsp;Thomas Hogue,&nbsp;Billy J. House,&nbsp;Toni Ray Howe,&nbsp;Brianna N. Isola,&nbsp;Mark A. Iwen,&nbsp;Jordyn Johnson,&nbsp;Richard O. Johnson III,&nbsp;Sophia P. Jones,&nbsp;Hanieh Karimi,&nbsp;Katy R. Kiser,&nbsp;Michael K. Koomson Jr.,&nbsp;Morgan M. Koss,&nbsp;Ryan P. Kovacs,&nbsp;Carol A. Kovalak Martin,&nbsp;Kassidy Lange,&nbsp;Kyle Lawrence Leathers,&nbsp;Michael H. Lee,&nbsp;Kevin W. Lehman,&nbsp;Garret R. Leopold,&nbsp;Hsiao-Chun Lin,&nbsp;Heather Liptak,&nbsp;Logan Liptak,&nbsp;Michael A. Liptak,&nbsp;Alonso Lopez,&nbsp;Evan L. Lopez,&nbsp;Don Loving,&nbsp;April Luehmann,&nbsp;Kristen M. Lusk,&nbsp;Tia L. MacDonald,&nbsp;Ian A. Mannings,&nbsp;Priscilla Marin,&nbsp;Christopher J. Martin,&nbsp;Jamie Martin,&nbsp;Alejandra Olivia Martinez,&nbsp;Terah L. Martinez,&nbsp;Elizabeth S. Mays,&nbsp;Seth McGowan,&nbsp;Edward M. McHenry III,&nbsp;Kaz Meszaros,&nbsp;Tyler J. Metivier,&nbsp;Quinn W. Miller,&nbsp;Adam V. Miranda,&nbsp;Carlos Miranda,&nbsp;Pranvera Miranda,&nbsp;David M. W. Mitchell,&nbsp;Lydia N. Montgomery,&nbsp;Lillie B. Moore,&nbsp;Christopher P. Morse,&nbsp;Ira S. Morse,&nbsp;Raman Mukundan,&nbsp;Patrick T. Murphy,&nbsp;Nicarao J. Narvaez,&nbsp;Ahmed Nasreldin,&nbsp;Thomas Neel,&nbsp;Travis A. Nelson,&nbsp;Ellianna Nestlerode,&nbsp;Adam Z. Neuville,&nbsp;Brian A. Neuville,&nbsp;Allison Newberg,&nbsp;Jeremy L. Nicholson,&nbsp;Makenna F. Nickens,&nbsp;Sining Niu,&nbsp;Jedidiah O’Brien,&nbsp;Luis A. Otero,&nbsp;Jacob A. Ott,&nbsp;Joel A. Ott,&nbsp;Justin M. Ott,&nbsp;Michael E. Ott,&nbsp;Shekhar Pant,&nbsp;Ivan Parmuzin,&nbsp;Eric J. Parr,&nbsp;Sagar P. Paudel,&nbsp;Courtney M. Payne,&nbsp;Hayden B. Phillips,&nbsp;Elizabeth R. Prinkey,&nbsp;Kwesi A. Quagraine,&nbsp;Wesley J. Reddish,&nbsp;Azariah Rhodes,&nbsp;Stephen Kyle Rimler,&nbsp;Carlyn S. Rocazella,&nbsp;Tiska E. Rodgers,&nbsp;Devalyn Rogers,&nbsp;Oren R. Ross,&nbsp;Benjamin D. Roth,&nbsp;Melissa Rummel,&nbsp;John F. Rusho,&nbsp;Michael W. Sampson,&nbsp;Sophia Saucerman,&nbsp;James Scoville,&nbsp;Martin Wayne Seifert,&nbsp;Michael H. Seile Sr.,&nbsp;Asad Shahab,&nbsp;Thomas G. Skirko,&nbsp;David C. Smith,&nbsp;Emily R. Snode-Brenneman,&nbsp;Cassandra Spaulding,&nbsp;Neha Srivastava,&nbsp;Amy L. Strecker,&nbsp;Aidan Sweets,&nbsp;Morghan Taylor,&nbsp;Deborah S. Teuscher,&nbsp;Owen Totten,&nbsp;Stephen Totten,&nbsp;Stephanie Totten,&nbsp;Andrew Totten,&nbsp;Corina R. Ursache,&nbsp;Susan V. Benedict,&nbsp;Yolanda Vasquez,&nbsp;R. Anthony Vincent,&nbsp;Alan Webb,&nbsp;Walter Webb,&nbsp;Roderick M. Weinschenk,&nbsp;Sedrick Weinschenk,&nbsp;Cash A. Wendel,&nbsp;Elisabeth Wheeler,&nbsp;Bethany A. Whitehouse,&nbsp;Gabriel J. Whitehouse,&nbsp;David A. Wiesner,&nbsp;Philip J. Williams,&nbsp;John A. Zakelj","doi":"10.1007/s11207-025-02588-9","DOIUrl":"10.1007/s11207-025-02588-9","url":null,"abstract":"<div><p>The Citizen CATE 2024 next-generation experiment placed 43 identical telescope and camera setups along the path of totality during the total solar eclipse (TSE) on 8 April 2024 to capture a 60-minute movie of the inner and middle solar corona in polarized visible light. The 2024 TSE path covered a large geographic swath of North America and we recruited and trained 36 teams of community participants (“citizen scientists”) representative of the various communities along the path of totality. Afterwards, these teams retained the equipment in their communities for on-going education and public engagement activities. Participants ranged from students (K12, undergraduate, and graduate), educators, and adult learners to amateur and professional astronomers. In addition to equipment for their communities, CATE 2024 teams received hands-on telescope training, educational and learning materials, and instruction on data analysis techniques. CATE 2024 used high-cadence, high-dynamic-range (HDR) polarimetric observations of the solar corona to characterize the physical processes that shape its heating, structure, and evolution at scales and sensitivities that cannot be studied outside of a TSE. Conventional eclipse observations do not span sufficient time to capture changing coronal topology, but the extended observation from CATE 2024 does. Analysis of the fully calibrated dataset will provide deeper insight and understanding into these critical physical processes. We present an overview of the CATE 2024 project, including how we engaged local communities along the path of totality, and the first look at CATE 2024 data products from the 2024 TSE.</p></div>","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":"301 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2026-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11207-025-02588-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146027021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Solar Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1