{"title":"Streamflow Intervals Prediction Using Coupled Autoregressive Conditionally Heteroscedastic With Bootstrap Model","authors":"Bugrayhan Bickici, Beste Hamiye Beyaztas, Zaher Mundher Yaseen, Ufuk Beyaztas, Ercan Kahya","doi":"10.1111/jfr3.70009","DOIUrl":null,"url":null,"abstract":"<p>Streamflow (<i>Q</i><sub><i>flow</i></sub>) process is one of the complex stochastic processes in the hydrology cycle owing to its associated non-linearity and non-stationarity characteristics. It is an essential hydrological process to address the complex time series nonlinear phenomena. In this research, a novel approach was proposed by integrating an autoregressive conditionally heteroscedastic (ARCH) method with bootstrap model to predict future <i>Q</i><sub><i>flow</i></sub> intervals. For this purpose, two <i>Q</i><sub><i>flow</i></sub> series located at the Eastern Black Sea basin (Turkey) were subjected to the application of the proposed methodology. Among other regression and machine learning (ML) models, which are suitable for <i>Q</i><sub><i>flow</i></sub> modeling, the autoregressive integrated moving average (ARIMA), seasonal autoregressive integrated moving average (SARIMA), and artificial neural network (ANN) were selected for modeling validation in this study. A group of three numerical metrics and graphical presentations were used for the modeling evaluation and assessment. The proposed ARCH approach performed a superior mathematical model to address the <i>Q</i><sub><i>flow</i></sub> interval prediction. Remarkable prediction accuracy was shown against the benchmark models. Overall, the approach of coupling the bootstrap procedure with the ARCH model exhibited a robust modeling strategy for predicting <i>Q</i><sub><i>flow</i></sub> intervals suggested as a new analysis tool.</p>","PeriodicalId":49294,"journal":{"name":"Journal of Flood Risk Management","volume":"18 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jfr3.70009","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Flood Risk Management","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfr3.70009","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Streamflow (Qflow) process is one of the complex stochastic processes in the hydrology cycle owing to its associated non-linearity and non-stationarity characteristics. It is an essential hydrological process to address the complex time series nonlinear phenomena. In this research, a novel approach was proposed by integrating an autoregressive conditionally heteroscedastic (ARCH) method with bootstrap model to predict future Qflow intervals. For this purpose, two Qflow series located at the Eastern Black Sea basin (Turkey) were subjected to the application of the proposed methodology. Among other regression and machine learning (ML) models, which are suitable for Qflow modeling, the autoregressive integrated moving average (ARIMA), seasonal autoregressive integrated moving average (SARIMA), and artificial neural network (ANN) were selected for modeling validation in this study. A group of three numerical metrics and graphical presentations were used for the modeling evaluation and assessment. The proposed ARCH approach performed a superior mathematical model to address the Qflow interval prediction. Remarkable prediction accuracy was shown against the benchmark models. Overall, the approach of coupling the bootstrap procedure with the ARCH model exhibited a robust modeling strategy for predicting Qflow intervals suggested as a new analysis tool.
期刊介绍:
Journal of Flood Risk Management provides an international platform for knowledge sharing in all areas related to flood risk. Its explicit aim is to disseminate ideas across the range of disciplines where flood related research is carried out and it provides content ranging from leading edge academic papers to applied content with the practitioner in mind.
Readers and authors come from a wide background and include hydrologists, meteorologists, geographers, geomorphologists, conservationists, civil engineers, social scientists, policy makers, insurers and practitioners. They share an interest in managing the complex interactions between the many skills and disciplines that underpin the management of flood risk across the world.