Ting Li, Yuanwei Wang, Xiaomei Fan, Lingxiao Wang, Xiangfei Li, Lin Zhao, Giri Raj Kattel, Xiaoyu Guo, Mengtian Fan
{"title":"Spatiotemporal changes of desertification areas in the Alxa Desert obtained from satellite imagery","authors":"Ting Li, Yuanwei Wang, Xiaomei Fan, Lingxiao Wang, Xiangfei Li, Lin Zhao, Giri Raj Kattel, Xiaoyu Guo, Mengtian Fan","doi":"10.1002/esp.70020","DOIUrl":null,"url":null,"abstract":"<p>Desertification is defined as land degradation in arid, semi-arid and dry sub-humid areas resulting from various factors. High-spatial-resolution desertification monitoring with long time series and accurate area quantification in the Alxa Desert has yet to be fully elucidated. Here, we exploited Landsat satellite images to develop a method for the monitoring of high-resolution, large-scale desertification dynamics using a Desertification Difference Index (DDI) model based on albedo and Topsoil Grain Size Index (TGSI). On this basis, we examined the spatial–temporal changes in the extent of desertified land and ascertained the impact of various factors (temperature, precipitation, total livestock) on the desertification process. We made a detailed classification of desertification (five types) and found that non-desertification accounted for the smallest proportion of the entire study region (annual mean 2.00 × 10<sup>4</sup> km<sup>2</sup>, 7.8%), while severe desertification contributed the largest proportion (annual mean 7.88 × 10<sup>4</sup> km<sup>2</sup>, 30.9%). Over the past 20 years, there has been a substantial reduction in extremely severe (−251 km<sup>2</sup>/yr) and moderate (−230 km<sup>2</sup>/yr) desertification areas, demonstrating the effectiveness of desert management. Regionally, considerable attention should be paid to the eastern Tengger Desert in terms of desert control; temporally, special attention should be paid to summer. High temperatures can exacerbate extremely severe, and severe desertification, contrary to the effect of increasing precipitation. Dynamic changes in desertification will become more complex under predicted climate change patterns, indicating that desertification prevention should be prioritized over control.</p>","PeriodicalId":11408,"journal":{"name":"Earth Surface Processes and Landforms","volume":"50 2","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Surface Processes and Landforms","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/esp.70020","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Desertification is defined as land degradation in arid, semi-arid and dry sub-humid areas resulting from various factors. High-spatial-resolution desertification monitoring with long time series and accurate area quantification in the Alxa Desert has yet to be fully elucidated. Here, we exploited Landsat satellite images to develop a method for the monitoring of high-resolution, large-scale desertification dynamics using a Desertification Difference Index (DDI) model based on albedo and Topsoil Grain Size Index (TGSI). On this basis, we examined the spatial–temporal changes in the extent of desertified land and ascertained the impact of various factors (temperature, precipitation, total livestock) on the desertification process. We made a detailed classification of desertification (five types) and found that non-desertification accounted for the smallest proportion of the entire study region (annual mean 2.00 × 104 km2, 7.8%), while severe desertification contributed the largest proportion (annual mean 7.88 × 104 km2, 30.9%). Over the past 20 years, there has been a substantial reduction in extremely severe (−251 km2/yr) and moderate (−230 km2/yr) desertification areas, demonstrating the effectiveness of desert management. Regionally, considerable attention should be paid to the eastern Tengger Desert in terms of desert control; temporally, special attention should be paid to summer. High temperatures can exacerbate extremely severe, and severe desertification, contrary to the effect of increasing precipitation. Dynamic changes in desertification will become more complex under predicted climate change patterns, indicating that desertification prevention should be prioritized over control.
期刊介绍:
Earth Surface Processes and Landforms is an interdisciplinary international journal concerned with:
the interactions between surface processes and landforms and landscapes;
that lead to physical, chemical and biological changes; and which in turn create;
current landscapes and the geological record of past landscapes.
Its focus is core to both physical geographical and geological communities, and also the wider geosciences