Neuroevolution insights into biological neural computation
IF 44.7 1区 综合性期刊Q1 MULTIDISCIPLINARY SCIENCESSciencePub Date : 2025-02-14
Risto Miikkulainen
{"title":"Neuroevolution insights into biological neural computation","authors":"Risto Miikkulainen","doi":"","DOIUrl":null,"url":null,"abstract":"<div >This article reviews existing work and future opportunities in neuroevolution, an area of machine learning in which evolutionary optimization methods such as genetic algorithms are used to construct neural networks to achieve desired behavior. The article takes a neuroscience perspective, identifying where neuroevolution can lead to insights about the structure, function, and developmental and evolutionary origins of biological neural circuitry that can be studied in further neuroscience experiments. It proposes optimization under environmental constraints as a unifying theme and suggests the evolution of language as a grand challenge whose time may have come.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"387 6735","pages":""},"PeriodicalIF":44.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.adp7478","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This article reviews existing work and future opportunities in neuroevolution, an area of machine learning in which evolutionary optimization methods such as genetic algorithms are used to construct neural networks to achieve desired behavior. The article takes a neuroscience perspective, identifying where neuroevolution can lead to insights about the structure, function, and developmental and evolutionary origins of biological neural circuitry that can be studied in further neuroscience experiments. It proposes optimization under environmental constraints as a unifying theme and suggests the evolution of language as a grand challenge whose time may have come.
期刊介绍:
Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research.
Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated.
Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.