Arianna O Osgood, Zeyi Huang, Kaitlyn H Szalay, Abhishek Chatterjee
{"title":"Strategies to Expand the Genetic Code of Mammalian Cells.","authors":"Arianna O Osgood, Zeyi Huang, Kaitlyn H Szalay, Abhishek Chatterjee","doi":"10.1021/acs.chemrev.4c00730","DOIUrl":null,"url":null,"abstract":"<p><p>Genetic code expansion (GCE) in mammalian cells has emerged as a powerful technology for investigating and engineering protein function. This method allows for the precise incorporation of a rapidly growing toolbox of noncanonical amino acids (ncAAs) into predefined sites of target proteins expressed in living cells. Due to the minimal size of these genetically encoded ncAAs, the wide range of functionalities they provide, and the ability to introduce them freely at virtually any site of any protein by simple mutagenesis, this technology holds immense potential for probing the complex biology of mammalian cells and engineering next-generation biotherapeutics. In this review, we provide an overview of the underlying machinery that enables ncAA mutagenesis in mammalian cells and how these are developed. We have also compiled an updated list of ncAAs that have been successfully incorporated into proteins in mammalian cells. Finally, we provide our perspectives on the current challenges that need to be addressed to fully harness the potential of this technology.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":" ","pages":"2474-2501"},"PeriodicalIF":51.4000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.chemrev.4c00730","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Genetic code expansion (GCE) in mammalian cells has emerged as a powerful technology for investigating and engineering protein function. This method allows for the precise incorporation of a rapidly growing toolbox of noncanonical amino acids (ncAAs) into predefined sites of target proteins expressed in living cells. Due to the minimal size of these genetically encoded ncAAs, the wide range of functionalities they provide, and the ability to introduce them freely at virtually any site of any protein by simple mutagenesis, this technology holds immense potential for probing the complex biology of mammalian cells and engineering next-generation biotherapeutics. In this review, we provide an overview of the underlying machinery that enables ncAA mutagenesis in mammalian cells and how these are developed. We have also compiled an updated list of ncAAs that have been successfully incorporated into proteins in mammalian cells. Finally, we provide our perspectives on the current challenges that need to be addressed to fully harness the potential of this technology.
期刊介绍:
Chemical Reviews is a highly regarded and highest-ranked journal covering the general topic of chemistry. Its mission is to provide comprehensive, authoritative, critical, and readable reviews of important recent research in organic, inorganic, physical, analytical, theoretical, and biological chemistry.
Since 1985, Chemical Reviews has also published periodic thematic issues that focus on a single theme or direction of emerging research.