Li Peng, Huaping Li, Sisi Yuan, Tao Meng, Yifan Chen, Xiangzheng Fu, Dongsheng Cao
{"title":"metaCDA: A Novel Framework for CircRNA-Driven Drug Discovery Utilizing Adaptive Aggregation and Meta-Knowledge Learning.","authors":"Li Peng, Huaping Li, Sisi Yuan, Tao Meng, Yifan Chen, Xiangzheng Fu, Dongsheng Cao","doi":"10.1021/acs.jcim.4c02193","DOIUrl":null,"url":null,"abstract":"<p><p>In the emerging field of RNA drugs, circular RNA (circRNA) has attracted much attention as a novel multifunctional therapeutic target. Delving deeper into the intricate interactions between circRNA and disease is critical for driving drug discovery efforts centered around circRNAs. Current computational methods face two significant limitations: a lack of aggregate information in heterogeneous graph networks and a lack of higher-order fusion information. To this end, we present a novel approach, metaCDA, which utilizes meta-knowledge and adaptive aggregate learning to improve the accuracy of circRNA and disease association predictions and addresses the limitations of both. We calculate multiple similarity measures between disease and circRNA, construct a heterogeneous graph based on these, and apply meta-networks to extract meta-knowledge from the heterogeneous graph, so that the constructed heterogeneous maps have adaptive contrast enhancement information. Then, we construct a nodal adaptive attention aggregation system, which integrates a multihead attention mechanism and a nodal adaptive attention aggregation mechanism, so as to achieve accurate capture of higher-order fusion information. We conducted extensive experiments, and the results show that metaCDA outperforms existing state-of-the-art models and can effectively predict disease-associated circRNA, opening up new prospects for circRNA-driven drug discovery.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c02193","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
In the emerging field of RNA drugs, circular RNA (circRNA) has attracted much attention as a novel multifunctional therapeutic target. Delving deeper into the intricate interactions between circRNA and disease is critical for driving drug discovery efforts centered around circRNAs. Current computational methods face two significant limitations: a lack of aggregate information in heterogeneous graph networks and a lack of higher-order fusion information. To this end, we present a novel approach, metaCDA, which utilizes meta-knowledge and adaptive aggregate learning to improve the accuracy of circRNA and disease association predictions and addresses the limitations of both. We calculate multiple similarity measures between disease and circRNA, construct a heterogeneous graph based on these, and apply meta-networks to extract meta-knowledge from the heterogeneous graph, so that the constructed heterogeneous maps have adaptive contrast enhancement information. Then, we construct a nodal adaptive attention aggregation system, which integrates a multihead attention mechanism and a nodal adaptive attention aggregation mechanism, so as to achieve accurate capture of higher-order fusion information. We conducted extensive experiments, and the results show that metaCDA outperforms existing state-of-the-art models and can effectively predict disease-associated circRNA, opening up new prospects for circRNA-driven drug discovery.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.