Miao Li, Hao Zhang, Kun Liang, Ming Chen, Jing Wang, Jiachen Duan, Suzhe Ma, Jiantai Ma
{"title":"CTAB-assisted Hydrothermal Synthesis of CoFeMo Layered Double Hydroxides for Efficient Oxygen Evolution Reactions.","authors":"Miao Li, Hao Zhang, Kun Liang, Ming Chen, Jing Wang, Jiachen Duan, Suzhe Ma, Jiantai Ma","doi":"10.1002/asia.202401688","DOIUrl":null,"url":null,"abstract":"<p><p>The sluggish kinetics of the oxygen evolution reaction (OER), one of the half-reactions in water electrolysis, severely constrains the large-scale implementation of this technology. Therefore, identifying electrocatalysts with superior OER performance is of critical importance. In this study, a CTAB-assisted hydrothermal method was employed to synthesize CoFeMo layered double hydroxide (LDH) nanosheets on nickel foam (NF) to achieve enhanced OER activity. The incorporation of Mo resulted in an increased number of active sites and improved electrical conductivity, yielding overpotentials of 164 and 265 mV at 10 and 50 mA cm⁻², respectively surpassing the performance of both CoFe LDH/NF and RuO₂/NF, as well as most previously reported OER catalysts. The exceptional activity was attributed to the high valence state of Mo, which stabilizes neighboring metals through electronic structure modulation. In addition, the presence of the cationic surfactant CTAB during the hydrothermal process effectively suppressed metal agglomeration and regulated the morphology.Overall, this work demonstrates that CoFeMo LDH/NF synthesized via CTAB-assisted hydrothermal methods serves as a highly effective electrocatalyst for oxygen evolution reactions.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202401688"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202401688","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The sluggish kinetics of the oxygen evolution reaction (OER), one of the half-reactions in water electrolysis, severely constrains the large-scale implementation of this technology. Therefore, identifying electrocatalysts with superior OER performance is of critical importance. In this study, a CTAB-assisted hydrothermal method was employed to synthesize CoFeMo layered double hydroxide (LDH) nanosheets on nickel foam (NF) to achieve enhanced OER activity. The incorporation of Mo resulted in an increased number of active sites and improved electrical conductivity, yielding overpotentials of 164 and 265 mV at 10 and 50 mA cm⁻², respectively surpassing the performance of both CoFe LDH/NF and RuO₂/NF, as well as most previously reported OER catalysts. The exceptional activity was attributed to the high valence state of Mo, which stabilizes neighboring metals through electronic structure modulation. In addition, the presence of the cationic surfactant CTAB during the hydrothermal process effectively suppressed metal agglomeration and regulated the morphology.Overall, this work demonstrates that CoFeMo LDH/NF synthesized via CTAB-assisted hydrothermal methods serves as a highly effective electrocatalyst for oxygen evolution reactions.
期刊介绍:
Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics.
Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews.
A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal.
Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).