Danitra Parker, Kanisa Davidson, Pawel A Osmulski, Maria Gaczynska, Andrew M Pickering
{"title":"Proteasome Augmentation Mitigates Age-Related Cognitive Decline in Mice.","authors":"Danitra Parker, Kanisa Davidson, Pawel A Osmulski, Maria Gaczynska, Andrew M Pickering","doi":"10.1111/acel.14492","DOIUrl":null,"url":null,"abstract":"<p><p>The aging brain experiences a significant decline in proteasome function. The proteasome is critical for many key neuronal functions including neuronal plasticity, and memory formation/retention. Treatment with proteasome inhibitors impairs these processes. Our study reveals a marked reduction in 20S and 26S proteasome activities in aged mice brains, including in the hippocampus, this is driven by reduced functionality of aged proteasome. The decline in proteasome activity is matched by a decline in 20S proteasome assembly. In contrast, 26S proteasome assembly was found to increase with age, though 26S proteasome activity was still found to decline. Our data suggests that age-related declines in proteasome activity is driven predominantly by reduced functionality of proteasome rather than altered composition. By overexpressing the proteasome subunit PSMB5 in the neurons of mice to increase the proteasome content and thus enhance its functionality, we slowed age-related declines in spatial learning and memory. We then showed acute treatment with a proteasome activator to rescue spatial learning and memory deficits in aged mice. These findings highlight the potential of proteasome augmentation as a therapeutic strategy to mitigate age-related cognitive declines.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e14492"},"PeriodicalIF":8.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.14492","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The aging brain experiences a significant decline in proteasome function. The proteasome is critical for many key neuronal functions including neuronal plasticity, and memory formation/retention. Treatment with proteasome inhibitors impairs these processes. Our study reveals a marked reduction in 20S and 26S proteasome activities in aged mice brains, including in the hippocampus, this is driven by reduced functionality of aged proteasome. The decline in proteasome activity is matched by a decline in 20S proteasome assembly. In contrast, 26S proteasome assembly was found to increase with age, though 26S proteasome activity was still found to decline. Our data suggests that age-related declines in proteasome activity is driven predominantly by reduced functionality of proteasome rather than altered composition. By overexpressing the proteasome subunit PSMB5 in the neurons of mice to increase the proteasome content and thus enhance its functionality, we slowed age-related declines in spatial learning and memory. We then showed acute treatment with a proteasome activator to rescue spatial learning and memory deficits in aged mice. These findings highlight the potential of proteasome augmentation as a therapeutic strategy to mitigate age-related cognitive declines.
Aging CellBiochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍:
Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health.
The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include:
Academic Search (EBSCO Publishing)
Academic Search Alumni Edition (EBSCO Publishing)
Academic Search Premier (EBSCO Publishing)
Biological Science Database (ProQuest)
CAS: Chemical Abstracts Service (ACS)
Embase (Elsevier)
InfoTrac (GALE Cengage)
Ingenta Select
ISI Alerting Services
Journal Citation Reports/Science Edition (Clarivate Analytics)
MEDLINE/PubMed (NLM)
Natural Science Collection (ProQuest)
PubMed Dietary Supplement Subset (NLM)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
Web of Science (Clarivate Analytics)
Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.