Farah Karam, Yara El Deghel, Rabah Iratni, Ali H Dakroub, Ali H Eid
{"title":"The Gut Microbiome and Colorectal Cancer: An Integrative Review of the Underlying Mechanisms.","authors":"Farah Karam, Yara El Deghel, Rabah Iratni, Ali H Dakroub, Ali H Eid","doi":"10.1007/s12013-025-01683-9","DOIUrl":null,"url":null,"abstract":"<p><p>Colorectal cancer (CRC) is the second leading cause of cancer-related mortality worldwide. While the incidence and mortality of CRC have decreased overall due to better screening, rates in adults under 50 have risen. CRC can manifest as inherited syndromes (10%), familial clustering (20%), or sporadic forms (70%). The gut microbiota, comprising mainly firmicutes and bacteroidetes, play a key role in CRC development and prevention. Indeed, CRC progression is influenced by the dynamic interaction between the gut microbiota, the intestinal barrier, the immune system, and the production of short-chain fatty acids. Not surprisingly, imbalance in the gut microbiota, termed dysbiosis, has been linked to CRC due to ensuing chronic inflammation, DNA damage, and oxidative stress. This may explain the notion that probiotics and fecal microbiota transplantation offer potential strategies for CRC prevention and treatment by restoring microbial balance and enhancing anti-cancer immune responses. This review appraises the roles of gut microbiota in promoting or preventing CRC. It also discusses the mechanistic interplay between microbiota composition, the intestinal barrier, and the immune system, with the hope of developing potential therapeutic strategies.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-025-01683-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related mortality worldwide. While the incidence and mortality of CRC have decreased overall due to better screening, rates in adults under 50 have risen. CRC can manifest as inherited syndromes (10%), familial clustering (20%), or sporadic forms (70%). The gut microbiota, comprising mainly firmicutes and bacteroidetes, play a key role in CRC development and prevention. Indeed, CRC progression is influenced by the dynamic interaction between the gut microbiota, the intestinal barrier, the immune system, and the production of short-chain fatty acids. Not surprisingly, imbalance in the gut microbiota, termed dysbiosis, has been linked to CRC due to ensuing chronic inflammation, DNA damage, and oxidative stress. This may explain the notion that probiotics and fecal microbiota transplantation offer potential strategies for CRC prevention and treatment by restoring microbial balance and enhancing anti-cancer immune responses. This review appraises the roles of gut microbiota in promoting or preventing CRC. It also discusses the mechanistic interplay between microbiota composition, the intestinal barrier, and the immune system, with the hope of developing potential therapeutic strategies.
期刊介绍:
Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems
The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized.
Examples of subject areas that CBB publishes are:
· biochemical and biophysical aspects of cell structure and function;
· interactions of cells and their molecular/macromolecular constituents;
· innovative developments in genetic and biomolecular engineering;
· computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies;
· photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design
For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.