Polysaccharides from Astragalus membranaceus Bunge alleviate LPS-induced neuroinflammation in mice by modulating microbe-metabolite-brain axis and MAPK/NF-κB signaling pathway.
Dongyuan Liu, Yuying Zhu, Ziming Hou, Hao Wang, Qiangqiang Li
{"title":"Polysaccharides from Astragalus membranaceus Bunge alleviate LPS-induced neuroinflammation in mice by modulating microbe-metabolite-brain axis and MAPK/NF-κB signaling pathway.","authors":"Dongyuan Liu, Yuying Zhu, Ziming Hou, Hao Wang, Qiangqiang Li","doi":"10.1016/j.ijbiomac.2025.140885","DOIUrl":null,"url":null,"abstract":"<p><p>Neuroinflammation can lead to various neurodegenerative disorders, resulting in irreversible neurological dysfunction. Astragalus membranaceus Bunge polysaccharides (APS) present great potential in alleviating neuroinflammation; however, the specific mechanism underlying its neuroprotective effect remains unclear, leading to uncertain prospects for pharmaceutical applications. This study aims to elucidate the mechanism underlying APS-mediated inhibition of neuroinflammation in mice induced by lipopolysaccharide (LPS) through regulation of metabolic function, intestinal flora composition, and cell signaling transduction. Results indicated that APS pretreatment effectively mitigated LPS-induced brain damage. Metabolomics analysis revealed that APS pretreatment also regulated the metabolic disturbances induced by LPS through targeting five specific metabolic pathways. This regulation was supported by notable alterations in nine metabolite markers. Furthermore, APS pretreatment significantly modulated the abundance of four taxa of gut microbes (i.e., Romboutsia, Rikenella, Dubosiella, Odoribacter) closely associated with regulations in eleven metabolic and signaling pathways. Additionally, transcriptome analysis and Western blotting unveiled that APS pretreatment exerted a neuroprotective effect by modulating the MAPK/NF-κB signaling pathway. Our findings provide insights into the potential mechanisms underlying the neuroprotective effects of APS while establishing a solid foundation for future utilization of APS.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"140885"},"PeriodicalIF":7.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2025.140885","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neuroinflammation can lead to various neurodegenerative disorders, resulting in irreversible neurological dysfunction. Astragalus membranaceus Bunge polysaccharides (APS) present great potential in alleviating neuroinflammation; however, the specific mechanism underlying its neuroprotective effect remains unclear, leading to uncertain prospects for pharmaceutical applications. This study aims to elucidate the mechanism underlying APS-mediated inhibition of neuroinflammation in mice induced by lipopolysaccharide (LPS) through regulation of metabolic function, intestinal flora composition, and cell signaling transduction. Results indicated that APS pretreatment effectively mitigated LPS-induced brain damage. Metabolomics analysis revealed that APS pretreatment also regulated the metabolic disturbances induced by LPS through targeting five specific metabolic pathways. This regulation was supported by notable alterations in nine metabolite markers. Furthermore, APS pretreatment significantly modulated the abundance of four taxa of gut microbes (i.e., Romboutsia, Rikenella, Dubosiella, Odoribacter) closely associated with regulations in eleven metabolic and signaling pathways. Additionally, transcriptome analysis and Western blotting unveiled that APS pretreatment exerted a neuroprotective effect by modulating the MAPK/NF-κB signaling pathway. Our findings provide insights into the potential mechanisms underlying the neuroprotective effects of APS while establishing a solid foundation for future utilization of APS.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.