{"title":"A high molecular mass emulsifier derived from lentil seeds: The role of polysaccharide and protein in its stabilization behavior.","authors":"Soichiro Tsuda, Minori Iida, Masahiko Samoto, Norifumi Adachi, Akihiro Nakamura","doi":"10.1016/j.ijbiomac.2025.140880","DOIUrl":null,"url":null,"abstract":"<p><p>A water-soluble lentil polysaccharide (SLPS) extract was obtained from lentil fiber, at pH 10, after heating at 120 °C for 90 min, with a recovery as high as 16.5 %. SLPS had a weight average molecular mass of 1975 kg/mol, and contained 47 % glucose, 42 % arabinose, and 7 % uronic acid. Objective of this work was to evaluate the potential of SLPS to be employed as a natural emulsifier, by measuring its interfacial properties, as well as emulsifying capacity on a model emulsion system. Acidic emulsions were prepared with 5 % oil and 5 % SLPS and their particle size distribution was evaluated by light scattering and complementary microscopy, to determine their stability. SLPS showed the ability to reduce interfacial tension at oil/water interfaces, and the emulsions were stable under acidic conditions. Two different molecular weight fractions (SLPS-H and -L were investigated), and while the high molecular weight fraction (SLPS-H; 1567 kg/mol) was effective at stabilizing interfaces, emulsions prepared with low molecular weight fraction (SLPS-L; 2.3 kg/mol) showed aggregation and coalescence of oil droplets. Addition of pectinase caused aggregation of the droplets as measured by dynamic light scattering, demonstrating that adsorbs on the surface of oil droplets, and prevents aggregation of the oil droplets.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"304 Pt 1","pages":"140880"},"PeriodicalIF":7.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2025.140880","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A water-soluble lentil polysaccharide (SLPS) extract was obtained from lentil fiber, at pH 10, after heating at 120 °C for 90 min, with a recovery as high as 16.5 %. SLPS had a weight average molecular mass of 1975 kg/mol, and contained 47 % glucose, 42 % arabinose, and 7 % uronic acid. Objective of this work was to evaluate the potential of SLPS to be employed as a natural emulsifier, by measuring its interfacial properties, as well as emulsifying capacity on a model emulsion system. Acidic emulsions were prepared with 5 % oil and 5 % SLPS and their particle size distribution was evaluated by light scattering and complementary microscopy, to determine their stability. SLPS showed the ability to reduce interfacial tension at oil/water interfaces, and the emulsions were stable under acidic conditions. Two different molecular weight fractions (SLPS-H and -L were investigated), and while the high molecular weight fraction (SLPS-H; 1567 kg/mol) was effective at stabilizing interfaces, emulsions prepared with low molecular weight fraction (SLPS-L; 2.3 kg/mol) showed aggregation and coalescence of oil droplets. Addition of pectinase caused aggregation of the droplets as measured by dynamic light scattering, demonstrating that adsorbs on the surface of oil droplets, and prevents aggregation of the oil droplets.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.