{"title":"Bardoxolone displays potent activity against triple negative breast cancer by inhibiting the TRIP13/STAT3 circuit.","authors":"Jun-Hao Deng, Hong-Yue Li, Zi-Yang Liu, Jing-Pei Liang, Ying Ren, Yuan-Ying Zeng, Ya-Li Wang, Xin-Liang Mao","doi":"10.1038/s41401-025-01481-2","DOIUrl":null,"url":null,"abstract":"<p><p>Triple negative breast cancer (TNBC) is difficult to treat and novel therapeutic targets remain to be identified. TRIP13, an AAA+ ATPase, is highly expressed in breast cancer and predicts poor prognosis; however, the specific mechanism is not fully understood. In the present study, we found TRIP13 promotes TNBC cell viability and migration. In a mechanistic study, TRIP13 is found to activate STAT3 but not other STAT members. Out of expectation, TRIP13 is found to be upregulated by STAT3 and STAT3 specifically recognizes and binds to the STAT3-recognition element in the regulatory region of TRIP13. Moreover, we found bardoxolone, a recently approved drug for the treatment of chronic kidney disease, displays potent activity by inhibiting STAT3 activation and downregulating TRIP13. Furthermore, bardoxolone inhibits breast cancer cell proliferation and migration, and induces apoptosis. Consistent with this finding, ectopic expression of TRIP13 ablates bardoxolone-induced breast cancer cell apoptosis. Bardoxolone also exerts great activity to suppress TNBC tumor growth in vivo but does not show toxicity. Therefore, we reveal that the TRIP13/STAT3 circuit promotes TNBC cell proliferation and this circuit is a promising target for the treatment of TNBC.</p>","PeriodicalId":6942,"journal":{"name":"Acta Pharmacologica Sinica","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmacologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41401-025-01481-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Triple negative breast cancer (TNBC) is difficult to treat and novel therapeutic targets remain to be identified. TRIP13, an AAA+ ATPase, is highly expressed in breast cancer and predicts poor prognosis; however, the specific mechanism is not fully understood. In the present study, we found TRIP13 promotes TNBC cell viability and migration. In a mechanistic study, TRIP13 is found to activate STAT3 but not other STAT members. Out of expectation, TRIP13 is found to be upregulated by STAT3 and STAT3 specifically recognizes and binds to the STAT3-recognition element in the regulatory region of TRIP13. Moreover, we found bardoxolone, a recently approved drug for the treatment of chronic kidney disease, displays potent activity by inhibiting STAT3 activation and downregulating TRIP13. Furthermore, bardoxolone inhibits breast cancer cell proliferation and migration, and induces apoptosis. Consistent with this finding, ectopic expression of TRIP13 ablates bardoxolone-induced breast cancer cell apoptosis. Bardoxolone also exerts great activity to suppress TNBC tumor growth in vivo but does not show toxicity. Therefore, we reveal that the TRIP13/STAT3 circuit promotes TNBC cell proliferation and this circuit is a promising target for the treatment of TNBC.
期刊介绍:
APS (Acta Pharmacologica Sinica) welcomes submissions from diverse areas of pharmacology and the life sciences. While we encourage contributions across a broad spectrum, topics of particular interest include, but are not limited to: anticancer pharmacology, cardiovascular and pulmonary pharmacology, clinical pharmacology, drug discovery, gastrointestinal and hepatic pharmacology, genitourinary, renal, and endocrine pharmacology, immunopharmacology and inflammation, molecular and cellular pharmacology, neuropharmacology, pharmaceutics, and pharmacokinetics. Join us in sharing your research and insights in pharmacology and the life sciences.