Daisuke Sato, Bence Hegyi, Crystal M Ripplinger, Donald M Bers
{"title":"Dynamical Instability is a Major Cause of Cardiac Action Potential Variability.","authors":"Daisuke Sato, Bence Hegyi, Crystal M Ripplinger, Donald M Bers","doi":"10.1016/j.bpj.2025.02.007","DOIUrl":null,"url":null,"abstract":"<p><p>Increased beat-to-beat QT interval variability (QTV) in the electrocardiogram (ECG) is strongly associated with ventricular arrhythmias and sudden cardiac death, yet its origins remain poorly understood. While heart rate variability (HRV) decreases with deteriorating cardiac health, QTV increases, suggesting distinct underlying mechanisms. The stochastic nature of ion channel gating is a potential source of cardiac variability. However, the law of large numbers suggests that with billions of channels in the heart, this stochasticity should be minimized. In this study, we tested the hypothesis that dynamical instability amplifies stochastic ion channel fluctuations, leading to increased action potential (AP) variability. Using a mathematical model of ventricular myocytes, we investigated the relationship between AP variability and voltage instability. Our results demonstrate that stochastic gating alone cannot cause large AP variability, but dynamical instability significantly amplifies this variability. We found a positive correlation between voltage instability, indicated by the slope of the AP duration (APD) restitution curve, and APD variability. Notably, the largest variability occurred at the onset of alternans when considering every other beat. These findings provide a mechanistic explanation for increased QTV in pathological conditions and suggest that measuring QTV using every other beat may predict the onset of alternans and severity of alternans. Our study highlights the critical role of dynamical instability in cardiac electrical variability and offers new insights into the mechanisms underlying arrhythmogenesis.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2025.02.007","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Increased beat-to-beat QT interval variability (QTV) in the electrocardiogram (ECG) is strongly associated with ventricular arrhythmias and sudden cardiac death, yet its origins remain poorly understood. While heart rate variability (HRV) decreases with deteriorating cardiac health, QTV increases, suggesting distinct underlying mechanisms. The stochastic nature of ion channel gating is a potential source of cardiac variability. However, the law of large numbers suggests that with billions of channels in the heart, this stochasticity should be minimized. In this study, we tested the hypothesis that dynamical instability amplifies stochastic ion channel fluctuations, leading to increased action potential (AP) variability. Using a mathematical model of ventricular myocytes, we investigated the relationship between AP variability and voltage instability. Our results demonstrate that stochastic gating alone cannot cause large AP variability, but dynamical instability significantly amplifies this variability. We found a positive correlation between voltage instability, indicated by the slope of the AP duration (APD) restitution curve, and APD variability. Notably, the largest variability occurred at the onset of alternans when considering every other beat. These findings provide a mechanistic explanation for increased QTV in pathological conditions and suggest that measuring QTV using every other beat may predict the onset of alternans and severity of alternans. Our study highlights the critical role of dynamical instability in cardiac electrical variability and offers new insights into the mechanisms underlying arrhythmogenesis.
期刊介绍:
BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.