{"title":"Neural mechanisms of metacognitive improvement under speed pressure.","authors":"Caleb Stone, Jason B Mattingley, Dragan Rangelov","doi":"10.1038/s42003-025-07646-3","DOIUrl":null,"url":null,"abstract":"<p><p>The ability to accurately monitor the quality of one's choices, or metacognition, improves under speed pressure, possibly due to changes in post-decisional evidence processing. Here, we investigate the neural processes that regulate decision-making and metacognition under speed pressure using time-resolved analyses of brain activity recorded using electroencephalography. Participants performed a motion discrimination task under short and long response deadlines and provided a metacognitive rating following each response. Behaviourally, participants were faster, less accurate, and showed superior metacognition with short deadlines. These effects were accompanied by a larger centro-parietal positivity (CPP), a neural correlate of evidence accumulation. Crucially, post-decisional CPP amplitude was more strongly associated with participants' metacognitive ratings following errors under short relative to long response deadlines. Our results suggest that superior metacognition under speed pressure may stem from enhanced metacognitive readout of post-decisional evidence.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"223"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-07646-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The ability to accurately monitor the quality of one's choices, or metacognition, improves under speed pressure, possibly due to changes in post-decisional evidence processing. Here, we investigate the neural processes that regulate decision-making and metacognition under speed pressure using time-resolved analyses of brain activity recorded using electroencephalography. Participants performed a motion discrimination task under short and long response deadlines and provided a metacognitive rating following each response. Behaviourally, participants were faster, less accurate, and showed superior metacognition with short deadlines. These effects were accompanied by a larger centro-parietal positivity (CPP), a neural correlate of evidence accumulation. Crucially, post-decisional CPP amplitude was more strongly associated with participants' metacognitive ratings following errors under short relative to long response deadlines. Our results suggest that superior metacognition under speed pressure may stem from enhanced metacognitive readout of post-decisional evidence.
期刊介绍:
Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.