Identification of inhibitors of the Salmonella FraB deglycase, a drug target.

IF 2.8 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY FEBS Open Bio Pub Date : 2025-02-13 DOI:10.1002/2211-5463.70001
Jamison D Law, Yuan Gao, Sravya Kovvali, Pankajavalli Thirugnanasambantham, Vicki H Wysocki, Brian M M Ahmer, Venkat Gopalan
{"title":"Identification of inhibitors of the Salmonella FraB deglycase, a drug target.","authors":"Jamison D Law, Yuan Gao, Sravya Kovvali, Pankajavalli Thirugnanasambantham, Vicki H Wysocki, Brian M M Ahmer, Venkat Gopalan","doi":"10.1002/2211-5463.70001","DOIUrl":null,"url":null,"abstract":"<p><p>Nontyphoidal Salmonella is one of the most prevalent causes of human foodborne illnesses worldwide, with no narrow-spectrum antibiotics or vaccines available. Here, we seek to address this gap. During the host inflammatory response, Salmonella metabolizes fructose-asparagine as a nutrient using proteins encoded in the fra operon. Deletion of fraB leads to a build-up of 6-phosphofructose-aspartate, the substrate of FraB, and intoxicates Salmonella. Because fra genes are absent in mammals and most members of the human gut microbiome, FraB inhibitors are expected to have limited off-target effects and offer prospects as potential therapeutics. To identify such inhibitors, we conducted a high-throughput screening of small-molecule libraries using a FraB activity-based biochemical assay. We screened 131,165 compounds and identified 126 hits that could be obtained commercially for further characterization. When tested at 25 μm inhibitor in the presence of 1 mm 6-phosphofructose-aspartate, FraB activity was reduced ~ 30-100% by 65 compounds. Guided by preliminary cell-based data, we further characterized six compounds (one triazolidine, two thiadiazolidines, and three triazolothiadiazoles) and found them to exhibit IC<sub>50</sub> values from ~ 3 to 100 μm and K<sub>I</sub> (inhibitor constant) values from ~ 1 to 29 μm. Native mass spectrometry revealed that all three triazolothiadiazoles were capable of binding FraB; we also obtained evidence that one of the triazolothiadiazoles binds FraB even in the presence of substrate. The recurrence of multiple pharmacophores bolsters prospects for farming more hits from compound libraries and for designing therapeutics against nontyphoidal Salmonella.</p>","PeriodicalId":12187,"journal":{"name":"FEBS Open Bio","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Open Bio","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/2211-5463.70001","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Nontyphoidal Salmonella is one of the most prevalent causes of human foodborne illnesses worldwide, with no narrow-spectrum antibiotics or vaccines available. Here, we seek to address this gap. During the host inflammatory response, Salmonella metabolizes fructose-asparagine as a nutrient using proteins encoded in the fra operon. Deletion of fraB leads to a build-up of 6-phosphofructose-aspartate, the substrate of FraB, and intoxicates Salmonella. Because fra genes are absent in mammals and most members of the human gut microbiome, FraB inhibitors are expected to have limited off-target effects and offer prospects as potential therapeutics. To identify such inhibitors, we conducted a high-throughput screening of small-molecule libraries using a FraB activity-based biochemical assay. We screened 131,165 compounds and identified 126 hits that could be obtained commercially for further characterization. When tested at 25 μm inhibitor in the presence of 1 mm 6-phosphofructose-aspartate, FraB activity was reduced ~ 30-100% by 65 compounds. Guided by preliminary cell-based data, we further characterized six compounds (one triazolidine, two thiadiazolidines, and three triazolothiadiazoles) and found them to exhibit IC50 values from ~ 3 to 100 μm and KI (inhibitor constant) values from ~ 1 to 29 μm. Native mass spectrometry revealed that all three triazolothiadiazoles were capable of binding FraB; we also obtained evidence that one of the triazolothiadiazoles binds FraB even in the presence of substrate. The recurrence of multiple pharmacophores bolsters prospects for farming more hits from compound libraries and for designing therapeutics against nontyphoidal Salmonella.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
FEBS Open Bio
FEBS Open Bio BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
5.10
自引率
0.00%
发文量
173
审稿时长
10 weeks
期刊介绍: FEBS Open Bio is an online-only open access journal for the rapid publication of research articles in molecular and cellular life sciences in both health and disease. The journal''s peer review process focuses on the technical soundness of papers, leaving the assessment of their impact and importance to the scientific community. FEBS Open Bio is owned by the Federation of European Biochemical Societies (FEBS), a not-for-profit organization, and is published on behalf of FEBS by FEBS Press and Wiley. Any income from the journal will be used to support scientists through fellowships, courses, travel grants, prizes and other FEBS initiatives.
期刊最新文献
Identification of inhibitors of the Salmonella FraB deglycase, a drug target. Acacetin reduces endoplasmic reticulum stress through the P-eNOS/PERK signaling pathway to attenuate MGO-induced vascular endothelial cell dysfunction. A potential tumor suppressor role of PLK2 in glioblastoma. Issue Information HDAC4 regulates apoptosis in Acan-CreERT2;HDAC4d /d mice with osteoarthritis by downregulating ATF4.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1