{"title":"Dual-stream disentangled model for microvascular extraction in five datasets from multiple OCTA instruments.","authors":"Xiaoyang Hu, Jinkui Hao, Quanyong Yi, Yitian Zhao, Jiong Zhang","doi":"10.3389/fmed.2025.1542737","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Optical Coherence Tomography Angiography (OCTA) is a cutting-edge imaging technique that captures retinal capillaries at micrometer resolution using optical instrument. Accurate segmentation of retinal vasculature is essential for eye related diseases measurement and diagnosis. However, noise and artifacts from different imaging instruments can interfere with segmentation, and most existing deep learning models struggle with segmenting small vessels and capturing low-dimensional structural information. These challenges typically results in less precise segmentation performance.</p><p><strong>Methods: </strong>Therefore, we propose a novel and robust Dual-stream Disentangled Network (D2Net) for retinal OCTA microvascular segmentation. Specifically, the D2Net includes a dual-stream encoder that separately learns image artifacts and latent vascular features. By introducing vascular structure as a prior constraint and constructing auxiliary information, the network achieves disentangled representation learning, effectively minimizing the interference of noise and artifacts. The introduced vascular structure prior includes low-dimensional neighborhood energy from the Distance Correlation Energy (DCE) module, which helps to better perceive the structural information of continuous vessels.</p><p><strong>Results and discussion: </strong>To precisely evaluate our method on small vessels, we delicately establish OCTA microvascular labels by performing comprehensive and detailed annotations on the FOCA dataset, which includes data collected from different instruments, and evaluated the proposed D2Net effectively mitigates the challenges of microvasculature region recognition caused by noise and artifacts. The method achieves more refined segmentation performance. In addition, we validated the performance of D2Net on four OCTA datasets (OCTA-500, ROSE-O, ROSE-Z, and ROSE-H) acquired using different instruments, demonstrating its robustness and generalization capabilities in retinal vessel segmentation compared to other state-of-the-art methods.</p>","PeriodicalId":12488,"journal":{"name":"Frontiers in Medicine","volume":"12 ","pages":"1542737"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11813864/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fmed.2025.1542737","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Optical Coherence Tomography Angiography (OCTA) is a cutting-edge imaging technique that captures retinal capillaries at micrometer resolution using optical instrument. Accurate segmentation of retinal vasculature is essential for eye related diseases measurement and diagnosis. However, noise and artifacts from different imaging instruments can interfere with segmentation, and most existing deep learning models struggle with segmenting small vessels and capturing low-dimensional structural information. These challenges typically results in less precise segmentation performance.
Methods: Therefore, we propose a novel and robust Dual-stream Disentangled Network (D2Net) for retinal OCTA microvascular segmentation. Specifically, the D2Net includes a dual-stream encoder that separately learns image artifacts and latent vascular features. By introducing vascular structure as a prior constraint and constructing auxiliary information, the network achieves disentangled representation learning, effectively minimizing the interference of noise and artifacts. The introduced vascular structure prior includes low-dimensional neighborhood energy from the Distance Correlation Energy (DCE) module, which helps to better perceive the structural information of continuous vessels.
Results and discussion: To precisely evaluate our method on small vessels, we delicately establish OCTA microvascular labels by performing comprehensive and detailed annotations on the FOCA dataset, which includes data collected from different instruments, and evaluated the proposed D2Net effectively mitigates the challenges of microvasculature region recognition caused by noise and artifacts. The method achieves more refined segmentation performance. In addition, we validated the performance of D2Net on four OCTA datasets (OCTA-500, ROSE-O, ROSE-Z, and ROSE-H) acquired using different instruments, demonstrating its robustness and generalization capabilities in retinal vessel segmentation compared to other state-of-the-art methods.
期刊介绍:
Frontiers in Medicine publishes rigorously peer-reviewed research linking basic research to clinical practice and patient care, as well as translating scientific advances into new therapies and diagnostic tools. Led by an outstanding Editorial Board of international experts, this multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
In addition to papers that provide a link between basic research and clinical practice, a particular emphasis is given to studies that are directly relevant to patient care. In this spirit, the journal publishes the latest research results and medical knowledge that facilitate the translation of scientific advances into new therapies or diagnostic tools. The full listing of the Specialty Sections represented by Frontiers in Medicine is as listed below. As well as the established medical disciplines, Frontiers in Medicine is launching new sections that together will facilitate
- the use of patient-reported outcomes under real world conditions
- the exploitation of big data and the use of novel information and communication tools in the assessment of new medicines
- the scientific bases for guidelines and decisions from regulatory authorities
- access to medicinal products and medical devices worldwide
- addressing the grand health challenges around the world