{"title":"Application of biomaterials in mesenchymal stem cell based endometrial reconstruction: current status and challenges.","authors":"Ling He, Qianrong Li","doi":"10.3389/fbioe.2025.1518398","DOIUrl":null,"url":null,"abstract":"<p><p>Severe endometrial injuries may cause thin endometrium and intrauterine adhesion in women which can result in uterine factor infertility. Current treatments, including surgical separation of adhesions and hormonal regeneration of the endometrium, often fail to prevent re-adhesion and achieve satisfactory reproductive results. Recently, mesenchymal stem cells (MSCs) have become a promising new treatment for IUA. However, challenges such as cell survival and transplantation limit the effectiveness of MSC therapy. Researchers have explored various approaches to enhance the therapeutic efficiency of MSCs. Among these, biomaterials have been frequently employed due to their biocompatibility, degradability, and ability to provide a conducive environment for cell growth. This review discusses the use of various biomaterials in MSC-based therapies for endometrial reconstruction and summarizes evidence from preclinical and clinical studies, highlighting the efficacy and safety of these biomaterials. The review also addresses future directions in this field, such as advances in biomaterial engineering, new biomaterials currently under investigation, and personalized medicine approaches. This review emphasizes the significance of biomaterials in MSC-based therapy for endometrial reconstruction and provides practical guidance for developing new materials and treatment protocols for clinical applications.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"13 ","pages":"1518398"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11813782/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2025.1518398","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Severe endometrial injuries may cause thin endometrium and intrauterine adhesion in women which can result in uterine factor infertility. Current treatments, including surgical separation of adhesions and hormonal regeneration of the endometrium, often fail to prevent re-adhesion and achieve satisfactory reproductive results. Recently, mesenchymal stem cells (MSCs) have become a promising new treatment for IUA. However, challenges such as cell survival and transplantation limit the effectiveness of MSC therapy. Researchers have explored various approaches to enhance the therapeutic efficiency of MSCs. Among these, biomaterials have been frequently employed due to their biocompatibility, degradability, and ability to provide a conducive environment for cell growth. This review discusses the use of various biomaterials in MSC-based therapies for endometrial reconstruction and summarizes evidence from preclinical and clinical studies, highlighting the efficacy and safety of these biomaterials. The review also addresses future directions in this field, such as advances in biomaterial engineering, new biomaterials currently under investigation, and personalized medicine approaches. This review emphasizes the significance of biomaterials in MSC-based therapy for endometrial reconstruction and provides practical guidance for developing new materials and treatment protocols for clinical applications.
期刊介绍:
The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs.
In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.