{"title":"Renewal of wheat cultivars enhances ozone resistance in yield but detrimentally impacts quality: a survey of Chinese wheat.","authors":"Yinsen Qian, Zheng Zhao, Yifan Cao, Quan Ma, Nanyan Zhu, Lingqi Song, Min Zhu, Chunyan Li, Jinfeng Ding, Wenshan Guo, Xinkai Zhu","doi":"10.3389/fpls.2024.1526846","DOIUrl":null,"url":null,"abstract":"<p><p>The aggravation of ozone (O<sub>3</sub>) pollution poses a significant threat to agricultural production. With China being the leading wheat producer of the world, contributing 17.8% to global output, the vulnerability of wheat to O<sub>3</sub> is of particular concern. Despite extensive research on the impacts of O<sub>3</sub> on wheat production and the ongoing development of new wheat cultivars over the years, a connection between yield loss and the released ages of wheat cultivars under O<sub>3</sub> stress remains unestablished. Addressing this, the experiment was carried out at the Yangzhou Rice and Wheat Free-air Gas Concentration Enrichment (FACE) Testing Base in China, using 17 wheat cultivars developed since the 1970s as experimental materials. The elevated O<sub>3</sub> concentration in the test was 1.5 times higher than that in a normal atmosphere. The results indicated that O<sub>3</sub> led to a significant reduction in wheat yield of 18.19%. The yield of cultivars released in the 1970s, 1980s, 1990s, and after 2000, decreased by 24.9%, 23.3%, 19.8%, and 14.7%, respectively. Overall, the direct effect of 1,000-grain weight on yield was the most significant, followed by the number of grains per spike, whereas the number of spikes contributed least to the yield components. To enhance resistance to O<sub>3</sub> stress in future breeding efforts, increasing the 1,000-grain weight should be a primary objective. Our findings also revealed that elevated O<sub>3</sub> concentration led to higher sedimentation values and protein content while lowering bulk density, hardness, and starch content. As the release age approaches, the rate of decrease in bulk density diminishes gradually. In terms of hardness, sedimentation value, and starch content, varieties released in the 1990s exhibited less sensitivity, whereas those released after the 2000s experienced the most significant changes in protein content. It is worth noting that the impact on the nutritional quality of modern cultivars is particularly significant, particularly regarding starch and protein content. Stress indices indicate that the cultivars released after 2000 exhibit stronger resistance to yield loss. The Yangmai series cultivars appear to be promising parental lines for future breeding programs aimed at developing O<sub>3</sub>-resistant wheat.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"15 ","pages":"1526846"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11815558/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2024.1526846","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The aggravation of ozone (O3) pollution poses a significant threat to agricultural production. With China being the leading wheat producer of the world, contributing 17.8% to global output, the vulnerability of wheat to O3 is of particular concern. Despite extensive research on the impacts of O3 on wheat production and the ongoing development of new wheat cultivars over the years, a connection between yield loss and the released ages of wheat cultivars under O3 stress remains unestablished. Addressing this, the experiment was carried out at the Yangzhou Rice and Wheat Free-air Gas Concentration Enrichment (FACE) Testing Base in China, using 17 wheat cultivars developed since the 1970s as experimental materials. The elevated O3 concentration in the test was 1.5 times higher than that in a normal atmosphere. The results indicated that O3 led to a significant reduction in wheat yield of 18.19%. The yield of cultivars released in the 1970s, 1980s, 1990s, and after 2000, decreased by 24.9%, 23.3%, 19.8%, and 14.7%, respectively. Overall, the direct effect of 1,000-grain weight on yield was the most significant, followed by the number of grains per spike, whereas the number of spikes contributed least to the yield components. To enhance resistance to O3 stress in future breeding efforts, increasing the 1,000-grain weight should be a primary objective. Our findings also revealed that elevated O3 concentration led to higher sedimentation values and protein content while lowering bulk density, hardness, and starch content. As the release age approaches, the rate of decrease in bulk density diminishes gradually. In terms of hardness, sedimentation value, and starch content, varieties released in the 1990s exhibited less sensitivity, whereas those released after the 2000s experienced the most significant changes in protein content. It is worth noting that the impact on the nutritional quality of modern cultivars is particularly significant, particularly regarding starch and protein content. Stress indices indicate that the cultivars released after 2000 exhibit stronger resistance to yield loss. The Yangmai series cultivars appear to be promising parental lines for future breeding programs aimed at developing O3-resistant wheat.
期刊介绍:
In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches.
Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.