{"title":"Transcriptomic and physiological analyses reveal that cytokinin is involved in the compound leaf development of alfalfa.","authors":"Hongyao Mei, Jiajun Yan, Xuexin Jia, Weilin Wang, Shuangshuang Li, Ruiqi Sun, Hongjiao Jiang, Lijun Xie, Chuanen Zhou, Shiqie Bai, Lu Han","doi":"10.3389/fpls.2025.1460205","DOIUrl":null,"url":null,"abstract":"<p><p>Alfalfa is one of the primary forages, and its yield is largely dependent on the development of its leaf. In this study, to elucidate the mechanism of compound leaf development, we isolated and examined the alfalfa phenotype Chuancao No.7, exhibiting five leaflets. The agronomic traits of the Chuancao No.7 including the leaf blade area, leaf/stem ratio, total fresh weight, and dry weight showed significant increases compared to those of the wild-type. Analyses of forage quality traits indicated significant differences in crude protein (CP), acid detergent fiber (ADF), crude fat (CF), water-soluble sugars (WSS), carbon content, ash composition content, and phosphorus content between Chuancao No.7 alfalfa and wild-type. Transcriptomic profile analysis revealed that differentially expressed genes were identified in the cytokinin (CK) signaling pathway. Both exogenous treatment and endogenous CK content detection indicated that cytokinin played a key role in the development of the alfalfa compound leaf. These results serve as a valuable resource for optimizing the forage quality and exploring the excellent germplasm of alfalfa.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"16 ","pages":"1460205"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11814202/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2025.1460205","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Alfalfa is one of the primary forages, and its yield is largely dependent on the development of its leaf. In this study, to elucidate the mechanism of compound leaf development, we isolated and examined the alfalfa phenotype Chuancao No.7, exhibiting five leaflets. The agronomic traits of the Chuancao No.7 including the leaf blade area, leaf/stem ratio, total fresh weight, and dry weight showed significant increases compared to those of the wild-type. Analyses of forage quality traits indicated significant differences in crude protein (CP), acid detergent fiber (ADF), crude fat (CF), water-soluble sugars (WSS), carbon content, ash composition content, and phosphorus content between Chuancao No.7 alfalfa and wild-type. Transcriptomic profile analysis revealed that differentially expressed genes were identified in the cytokinin (CK) signaling pathway. Both exogenous treatment and endogenous CK content detection indicated that cytokinin played a key role in the development of the alfalfa compound leaf. These results serve as a valuable resource for optimizing the forage quality and exploring the excellent germplasm of alfalfa.
期刊介绍:
In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches.
Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.