Julietta Moustaka, Ilektra Sperdouli, Emmanuel Panteris, Ioannis-Dimosthenis S Adamakis, Michael Moustakas
{"title":"Aspirin Foliar Spray-Induced Changes in Light Energy Use Efficiency, Chloroplast Ultrastructure, and ROS Generation in Tomato.","authors":"Julietta Moustaka, Ilektra Sperdouli, Emmanuel Panteris, Ioannis-Dimosthenis S Adamakis, Michael Moustakas","doi":"10.3390/ijms26031368","DOIUrl":null,"url":null,"abstract":"<p><p>Aspirin (Asp) is extensively used in human health as an anti-inflammatory, antipyretic, and anti-thrombotic drug. In this study, we investigated if the foliar application of Asp on tomato plants has comparable beneficial effects on photosynthetic function to that of salicylic acid (SA), with which it shares similar physiological characteristics. We assessed the consequences of foliar Asp-spray on the photosystem II (PSII) efficiency of tomato plants, and we estimated the reactive oxygen species (ROS) generation and the chloroplast ultrastructural changes. Asp acted as an osmoregulator by increasing tomato leaf water content and offering antioxidant protection. This protection kept the redox state of plastoquinone (PQ) pull (q<i>p</i>) more oxidized, increasing the fraction of open PSII reaction centers and enhancing PSII photochemistry (Φ<i><sub>PSII</sub></i>). In addition, Asp foliar spray decreased reactive oxygen species (ROS) formation, decreasing the excess excitation energy on PSII. This resulted in a lower singlet oxygen (<sup>1</sup>O<sub>2</sub>) generation and a lower quantum yield for heat dissipation (Φ<i><sub>NPQ</sub></i>), indicating the photoprotective effect provided by Asp, especially under excess light illumination. Simultaneously, we observed a decrease in stomatal opening by Asp, which reduced the transpiration. Chloroplast ultrastructural data revealed that Asp, by offering a photoprotective effect, decreased the need for the photorespiration process, which reduces photosynthetic performance. It is concluded that Asp shares similar physiological characteristics with SA, having an equivalent beneficial impact to SA by acting as a biostimulant of the photosynthetic function for an enhanced crop yield.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 3","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms26031368","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Aspirin (Asp) is extensively used in human health as an anti-inflammatory, antipyretic, and anti-thrombotic drug. In this study, we investigated if the foliar application of Asp on tomato plants has comparable beneficial effects on photosynthetic function to that of salicylic acid (SA), with which it shares similar physiological characteristics. We assessed the consequences of foliar Asp-spray on the photosystem II (PSII) efficiency of tomato plants, and we estimated the reactive oxygen species (ROS) generation and the chloroplast ultrastructural changes. Asp acted as an osmoregulator by increasing tomato leaf water content and offering antioxidant protection. This protection kept the redox state of plastoquinone (PQ) pull (qp) more oxidized, increasing the fraction of open PSII reaction centers and enhancing PSII photochemistry (ΦPSII). In addition, Asp foliar spray decreased reactive oxygen species (ROS) formation, decreasing the excess excitation energy on PSII. This resulted in a lower singlet oxygen (1O2) generation and a lower quantum yield for heat dissipation (ΦNPQ), indicating the photoprotective effect provided by Asp, especially under excess light illumination. Simultaneously, we observed a decrease in stomatal opening by Asp, which reduced the transpiration. Chloroplast ultrastructural data revealed that Asp, by offering a photoprotective effect, decreased the need for the photorespiration process, which reduces photosynthetic performance. It is concluded that Asp shares similar physiological characteristics with SA, having an equivalent beneficial impact to SA by acting as a biostimulant of the photosynthetic function for an enhanced crop yield.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).