{"title":"Fritillaria thunbergii Miq. extract ameliorated experimental pulmonary fibrosis partly through the PI3K/AKT/FOXO signalling pathway.","authors":"Siwen Feng, Gonghao Xu, Qi Ding, Yuanyuan Shi","doi":"10.1016/j.jep.2025.119445","DOIUrl":null,"url":null,"abstract":"<p><strong>Ethnopharmacological relevance: </strong>Pulmonary fibrosis is an irreversible lung disease with a high mortality rate. Zhebeimu (ZBM, Fritillaria thunbergii Miq.) is a Chinese medicine commonly used for the treatment of pulmonary fibrosis in China.</p><p><strong>Aim of the study: </strong>In this study, the protective effect and mechanism of ZBM extract in the treatment of pulmonary fibrosis were investigated in vivo and in vitro.</p><p><strong>Materials and methods: </strong>The protective effect of ZBM extract was assessed using an in vivo model of bleomycin (BLM) tracheal drip and transforming growth factor-β(TGF-β1)-induced fibroblasts to simulate pulmonary fibrosis, and lung function, lung histopathological status and hydroxyproline were tested. Relevant pathways were detected using protein blotting, immunofluorescence and immunohistochemistry.</p><p><strong>Results: </strong>ZBM extract effectively improved lung function, inflammatory changes and fibrotic deposition in the lungs, and reduced the expression of fibroblast markers in mice. In addition, ZBM extract significantly inhibited TGF-β1-induced hyperphosphorylation of FOXO3, and simultaneously improved the low expression level of FOXO3 prototype protein and significantly reduced the phosphorylation level of PI3K-p85 and AKT1, suggesting that ZBM extract improves lung fibrosis by inhibiting the over-activation of PI3K/AKT/FOXO signalling pathway.</p><p><strong>Conclusion: </strong>The PI3K/AKT/FOXO signalling pathway is critical for ZBM extract to improve pulmonary fibrosis.</p>","PeriodicalId":15761,"journal":{"name":"Journal of ethnopharmacology","volume":" ","pages":"119445"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ethnopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jep.2025.119445","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ethnopharmacological relevance: Pulmonary fibrosis is an irreversible lung disease with a high mortality rate. Zhebeimu (ZBM, Fritillaria thunbergii Miq.) is a Chinese medicine commonly used for the treatment of pulmonary fibrosis in China.
Aim of the study: In this study, the protective effect and mechanism of ZBM extract in the treatment of pulmonary fibrosis were investigated in vivo and in vitro.
Materials and methods: The protective effect of ZBM extract was assessed using an in vivo model of bleomycin (BLM) tracheal drip and transforming growth factor-β(TGF-β1)-induced fibroblasts to simulate pulmonary fibrosis, and lung function, lung histopathological status and hydroxyproline were tested. Relevant pathways were detected using protein blotting, immunofluorescence and immunohistochemistry.
Results: ZBM extract effectively improved lung function, inflammatory changes and fibrotic deposition in the lungs, and reduced the expression of fibroblast markers in mice. In addition, ZBM extract significantly inhibited TGF-β1-induced hyperphosphorylation of FOXO3, and simultaneously improved the low expression level of FOXO3 prototype protein and significantly reduced the phosphorylation level of PI3K-p85 and AKT1, suggesting that ZBM extract improves lung fibrosis by inhibiting the over-activation of PI3K/AKT/FOXO signalling pathway.
Conclusion: The PI3K/AKT/FOXO signalling pathway is critical for ZBM extract to improve pulmonary fibrosis.
期刊介绍:
The Journal of Ethnopharmacology is dedicated to the exchange of information and understandings about people''s use of plants, fungi, animals, microorganisms and minerals and their biological and pharmacological effects based on the principles established through international conventions. Early people confronted with illness and disease, discovered a wealth of useful therapeutic agents in the plant and animal kingdoms. The empirical knowledge of these medicinal substances and their toxic potential was passed on by oral tradition and sometimes recorded in herbals and other texts on materia medica. Many valuable drugs of today (e.g., atropine, ephedrine, tubocurarine, digoxin, reserpine) came into use through the study of indigenous remedies. Chemists continue to use plant-derived drugs (e.g., morphine, taxol, physostigmine, quinidine, emetine) as prototypes in their attempts to develop more effective and less toxic medicinals.